Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

If you are registered

You will not be able to connect if you exceed ten failed attempts.

If you are not yet registered

The SINC Agency offers different services depending on your profile.

Select yours:

Journalists Institutions
If you are registered

You will not be able to connect if you exceed ten failed attempts.

If you are not yet registered

The SINC Agency offers different services depending on your profile.

Select yours:

Journalists Institutions

Scientists discover how to increase the longevity of seeds with genetic engineering

Un estudio desarrollado por investigadores del Instituto de Biología Molecular y Celular de Plantas ha abierto una nueva vía para aumentar la longevidad de las semillas de las plantas mediante ingeniería genética. Sus resultados han sido publicados en la revista Plant Physiology.

¿Cómo incrementar la longevidad de las semillas?

Investigadores del Instituto de Biología Molecular y Celular de Plantas (centro mixto del CSIC y la Universidad Politécnica de Valencia) y la Unidad de Investigación en Genómica Vegetal del instituto francés Evry, han descubierto una forma de mejorar la longevidad de las semillas de las plantas. Sus resultados han sido publicados en la revista Plant Physiology.

La clave reside en la sobreexpresión del gen ATHB25; este gen codifica una proteína reguladora de la expresión de otros genes. Según han comprobado los investigadores, las plantas que sobre expresan dicho gen tienen aumentada la cantidad de giberelina, que es la hormona que promueve el crecimiento de las plantas, lo que genera a su vez un refuerzo de la cubierta protectora de la semilla.

“Esta cubierta es la responsable de evitar la entrada de oxígeno en la semilla; el aumento en la giberelina la hace más fuerte y esto deriva al final en una mayor resistencia y longevidad de la semilla”, explica el investigador del CSIC Eduardo Bueso.

A study developed by researchers of the Institute for Plant Molecular and Cell Biology (IBMCP), a joint center of the Universitat Politècnica de València and the Spanish National Research Council (CSIC), in collaboration with the Unit for Plant Genomics Research of Evry, France (URGV, in French) has discovered a new way of improving the longevity of plant seeds using genetic engineering. Plant Physiology magazine has published the research results.

This gene encodes a protein that regulates gene expression, producing a new mutant that gives the seed new properties

The key is the overexpression of the ATHB25 gene. This gene encodes a protein that regulates gene expression, producing a new mutant that gives the seed new properties. Researchers have proven that this mutant has more gibberellin -the hormone that promotes plant growth-, which means the seed coat is reinforced as well. “The seed coat is responsible for preventing oxygen from entering the seed; the increase in gibberellin strengthens it and this leads to a more durable and longer lasting seed,” explains Eduardo Bueso, researcher at the IBMCP (UPV-CSIC).

This mechanism is new, as tolerance to stresses such as aging has always been associated with another hormone, abscisic acid, which regulates defenses based on proteins and small protective molecules, instead of producing the growth of structures like gibberellin does.

The study has been made on the experimental model plant Arabidopsis thaliana, a species that presents great advantages for molecular biology research. Researchers of the IBMCP traced half a million seeds, related to one hundred thousand lines of Arabidopsis mutated by T-DNA insertion, using the natural system of Agrobacterium tumefaciens. “Finally, we analyzed four mutants in the study and we proved the impact on the seed longevity when the overexpression of the ATHB25 gene is introduced,” states Ramón Serrano, researcher at the IBMCP.

Researchers compared the longevity of genetically modified Arabidopsis seeds and seeds which were not modified. In order to do this, they preserved them for thirty months under specific conditions of room temperature and humidity. After thirty months, only 20% of the control plants germinated again, whereas almost the all of the modified plants (90%) began the germination process again.

Researchers of the IBMCP are now trying to improve the longevity of different species that are of agronomical interest, such as tomatoes or wheat

Researchers of the IBMCP are now trying to improve the longevity of different species that are of agronomical interest, such as tomatoes or wheat.

Biodiversity and benefits for farmers

This discovery is particularly significant for the conservation of biodiversity, preserving seed species and, especially, for farmers.

“In the past, a lot of different plant species were cultivated, but many of them are dissapearing because high performance crops have now become a priority. Seed banks were created in order to guarantee the conservation of species, but they require a periodical regeneration of the seeds. With this mutant the regeneration periods could be extended,” explains Eduardo Bueso.

With regard to farmers, Serrano explains that “the increase of the lifespan of seeds would mean a reduction in their purchase price.”

References:

Bueso, E., Muñoz-Bertomeu, J., Campos, F., Brunaud, V., Martínez, L., Sayas, E., Ballester, P., Yenush, L., Serrano, R. Arabidopsis thaliana HOMEOBOX 25 uncovers a role for gibberellins in seed longevity. Plant Physiology. DOI: 164: 999 1010.

Source: Consejo Superior de Investigaciones Científicas
Copyright: Creative Commons

For media only:

If you are a journalist and would like to contact the researchers, please register as a journalist in SINC.

Related articles