Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Agencia Sinc
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Demuestran por primera vez la existencia de moléculas efímeras

Científicos de la Universidad de Santiago de Compostela y de IIBM Research Zúrich (Suiza) han conseguido probar la existencia de los arinos, una familia de moléculas extremadamente reactivas que fueron sugeridas por primera vez hace 113 años. La técnica podría aplicarse en la elaboración de nanocintas de grafeno y dispositivos unimoleculares.

AFM image of an aryne molecule imaged with a CO ti
Imagen de microscopía de fuerza atómica (AFM) de una molécula de arino. / IBM Research/CiQUS

Un equipo mixto formado por investigadores del CiQUS, el Centro Singular de Investigación en Química Biológica y Materiales Moleculares de la Universidad de Santiago de Compostela, y de IBM Research Zúrich ha conseguido demostrar la existencia de una familia de moléculas extremadamente reactivas y de vida corta que fueron sugeridas por primera vez hace 113 años: los arinos.

La técnica podría tener aplicaciones en ámbitos como la química y la electrónica sobre superficies, con materiales como el grafeno

La técnica desarrollada podría tener aplicaciones en ámbitos como la química y la electrónica sobre superficies, concretamente para la elaboración de nanocintas de grafeno o dispositivos unimoleculares.

Algunas de las muchas moléculas que existen en el universo son lo suficientemente estables para ser aisladas y caracterizadas, pero muchas otras tienen un tiempo de vida tan corto que sólo pueden ser identificadas de manera indirecta, estudiando los productos de sus reacciones o a través de métodos espectroscópicos.

Entre este grupo de moléculas se encuentran los arinos, cuya existencia fue propuesta por primera vez en 1902. Desde entonces, la química de arinos ha sido clave en la síntesis de una gran variedad de compuestos muy útiles, como los fármacos o los materiales moleculares. El reto que presentan estas moléculas radica en que existen únicamente durante unos milisegundos, algo que hasta hoy hacía extremadamente difícil su estudio.

Ahora, la revista Nature Chemistry publica la primera imagen de una molécula individual de arino, fruto del esfuerzo de un trabajo conjunto realizado por los investigadores del CiQUS e IBM, que han desarrollado una técnica de microscopía con resolución atómica.

"Los arinos se estudian en las asignaturas de química orgánica en grados universitarios por todo el mundo. Por lo tanto, es un alivio descubrir que estas moléculas existen en realidad", afirma el Profesor Diego Peña, químico en la USC. "Estamos deseando comprobar qué nuevos retos químicos se pueden abordar mediante esta combinación entre la síntesis orgánica y la microscopía de fuerza atómica (AFM)".

El proceso comenzó con la preparación de las moléculas precursoras de los arinos en el CiQUS; posteriormente, los investigadores del IBM Research emplearon la punta de un microscopio de efecto túnel (STM) para generar arinos individuales a partir de las moléculas precursoras mediante manipulación atómica. Los experimentos se realizaron sobre una fina capa de cloruro sódico a temperaturas próximas al cero absoluto, con el fin de estabilizar los arinos.

Los investigadores de CiQUS e IBM que han desarrollado una técnica de microscopía con resolución atómica para analizar los arinos

Una vez que estas moléculas fueron generadas, los investigadores usaron la técnica AFM para medir las interacciones entre la punta del microscopio -que termina en una única molécula de monóxido de carbono-, y la muestra, logrando de esta manera visualizar la estructura molecular de los arinos. El resultado obtenido fue una imagen con tal nitidez que los científicos pudieron estudiar su naturaleza química y las pequeñas diferencias entre los distintos enlaces.

"El equipo de IBM viene desarrollando desde 2009 varias técnicas punteras que han hecho posible este logro", dice Niko Pavliček, físico en el IBM Research. "En el caso de este estudio fue esencial seleccionar una superficie aislante sobre la que se adsorbieran las moléculas, así como una punta del microscopio adecuada que permitiese visualizarlas. Creemos que esta técnica tendrá mucha relevancia en el futuro de la química y de la electrónica».

El trabajo es resultado del proyecto europeo PAMS (Planar Atomic and Molecular Scale Devices), cuyo objetivo consiste en desarrollar nuevos dispositivos electrónicos de tamaño nanométrico. Parte de esta investigación está financiada por un proyecto Advanced Grant del European Research Council concedido al investigador de IBM Gerhard Meyer, quien es coautor del trabajo. Estos prestigiosos proyectos financian a los mejores investigadores que trabajan en las fronteras del conocimiento en Europa.

Ejemplo de colaboración público-privada

IBM Research y el CiQUS ya habían colaborado previamente, publicando trabajos sobre la diferenciación de enlaces químicos en moléculas individuales y la visualización de nanografenos generados a partir de compuestos orgánicos sencillos.

Esta investigación es también resultado de la inversión por parte de IBM de 3.000 millones de dólares para los próximos cinco años, con el fin de avanzar en la tecnología de los circuitos integrados y las innovaciones en semiconductores, necesarias para cumplir las demandas de la computación en la nube o los sistemas de datos masivos. Por otra parte, los resultados obtenidos en este trabajo refuerzan una de las líneas de investigación del CiQUS, centrada en el desarrollo de aproximaciones ascendentes a la electrónica de tamaño molecular.

El STM y su técnica derivada AFM son las principales herramientas de trabajo en la investigación a escala atómica y molecular. El STM, que fue inventado por Gerd Binnig y Heinrich Rohrer en IBM Research - Zurich en 1981, permitió a los científicos visualizar por primera vez átomos individuales sobre diferentes superficies. Este microscopio revolucionario, por el cual los dos científicos recibieron en 1986 el Premio Nobel de Física, ha expandido las fronteras de nuestro conocimiento, revelando las propiedades de las superficies y de las moléculas o átomos adsorbidos sobre ellas.

Fuente: CiQUS
Derechos: Creative Commons
Artículos relacionados