MATEMÁTICAS, FÍSICA Y QUÍMICA: Astronomía y Astrofísica

Por fin se han detectado en la Tierra estas ondulaciones del espacio-tiempo

Las ondas gravitacionales explicadas para principiantes

  • Facebook
  • Delicious
  • Meneame
  • Arroba

Los dos gigantescos detectores del experimento LIGO, separados 3.000 km en EE UU, han detectado las pequeñísimas vibraciones generadas por ondas gravitacionales procedentes de la fusión de dos agujeros negros. ¿Pero qué son exactamente esas misteriosas ondas y en qué consiste el experimento? Aquí están las claves para entender a los protagonistas del gran descubrimiento científico del año.

Más información sobre:
ondas gravitacionales
LIGO
Einstein
astrofísica
astronomía
cosmología

SINC | | 11 febrero 2016 16:40

<p>Las ondas gravitacionales son ondulaciones concéntricas que encojen y estiran la ‘tela’ del espacio-tiempo. / NASA</p>

Las ondas gravitacionales son ondulaciones concéntricas que encojen y estiran la ‘tela’ del espacio-tiempo. / NASA

Las ondas gravitacionales

¿Qué son? Son ondulaciones concéntricas que encogen y estiran la ‘tela’ del espacio-tiempo mientras viajan a la velocidad de la luz. Se originan por eventos muy violentos, como la fusión de dos agujeros negros. Este sería el caso de la primera onda gravitacional detectada: GW150914.

¿Quién fue el primero en pensar en ellas? La existencia de estas ondas la predijo Albert Einstein hace un siglo. Son consecuencia de su teoría general de la relatividad, donde se plantea que el espacio-tiempo es curvo y que objetos con masa muy acelerados cambian la curvatura de ese espacio-tiempo y producen ondas gravitacionales.

¿Cuándo y dónde se han detectado? El 14 de septiembre de 2015 a las 11:51 (hora europea de verano) por los dos detectores gemelos del Observatorio por Interferometría Láser de Ondas Gravitacionales (LIGO, por sus siglas en inglés), en EE UU.

¿Es la primera vez que se han visto? Aunque los científicos ya habían deducido su existencia, hasta ahora no se habían podido detectar directamente. Hace más de 50 años que diversos experimentos en todo el mundo (como LIGO en EE UU y VIRGO en Europa) han tratado de conseguir la prueba experimental. Ha sido muy difícil encontrarlas debido a que sus amplitudes son extremadamente pequeñas y los grandes eventos que las producen son poco frecuentes. Aunque son causadas por el movimiento de la masa, la mayoría son tan débiles que no tienen ningún efecto medible.

¿Por qué son tan tenues? Cuando se producen eventos cósmicos violentos, hacen que el tejido del espacio vibre como un tambor. Las ondulaciones del espacio-tiempo emanan en todas direcciones, viajando a la velocidad de la luz y distorsionando físicamente todo a su paso. Pero cuanto más se alejan estas ondas de su origen, más pequeñas se vuelven. Una distorsión inicial en el espacio de varios kilómetros causada por ellas se queda reducida a solo una fracción del tamaño del protón caundo llega a la Tierra.

¿Cómo se han detectado? Para que la tecnología actual haya podido detectarlas se han tenido que buscar aquellas –todavía extremadamente tenues– irradiadas a través del cosmos desde sucesos extremadamente violentos, como las explosiones de estrellas y colisiones de agujeros negros. Solo laboratorios como LIGO, equipados con instrumentos láser de ultraprecisión, son capaces de detectarlas a través de las pequeñísimas perturbaciones que provocan en los haces de luz de sus detectores.

¿No hubo ya un anuncio sobre estas ondas hace un par de años? En 2014 el equipo del telescopio BICEP2 anunció haber descubierto un tipo especial de ondas gravitacionales: las primigenias que surgieron tras el Big Bang. La huella que dejaron en la denominada radiación de fondo de microondas (CMB) es lo que se supone observó ese telescopio desde la Antártida. Pero los datos del satélite Planck confirmaron que aquellos resultados no tuvieron en cuenta el polvo galáctico, por lo que no eran válidos. A corto plazo LIGO no tiene la capacidad de detectar esas ondas gravitacionales primigenias, por lo que habrá que seguir confiando en instrumentos como BICEP2.

¿De qué vale haber detectado por fin ondas gravitacionales? Estas ondas proporcionan información sobre los objetos que las producen, los eventos más violentos del universo como las supernovas o las colisiones y fusiones de agujeros negros y estrellas de neutrones. Su detección abre el universo a investigaciones completamente nuevas, además de facilitar el camino del Premio Nobel a sus descubridores.

El experimento LIGO

VistaAerea-LigoCaltech

Vistas aéreas de las estaciones de LIGO en Hanford (Washington) y Livingston (Luisiana). / JPL Caltech

¿Qué es? Es un sistema de dos detectores idénticos construidos en Hanford (estado de Washington) y Livingston (Luisiana) para detectar vibraciones increíblemente pequeñas generadas por el paso de ondas gravitacionales. Sus dos estaciones están separadas 3.000 km, lo que permite comparar y confirmar los datos sobre cualquier perturbación espacio-temporal provocada por estas ondas.

¿Quiénes participan en él? La colaboración científica LIGO está integrada por más de mil científicos de universidades de quince países, incluido el Grupo de Relatividad y Gravitación de la Universidad de las Islas Baleares. El experimento inicial fue concebido y construido por investigadores de los institutos MIT y Caltech, y financiado por la National Science Foundation en EE UU.

¿Qué había detectado LIGO hasta ahora? Entre los años 2002 y 2010, LIGO estuvo funcionando sin detectar ondas gravitacionales. No ha sido hasta el 18 de septiembre de 2015, y tras una inversión de 200 millones de dólares, cuando un rebautizado Advanced Ligo ha empezado a operar con instrumentos mucho más avanzados.

interferometro_ligo

Esquema de un interferómetro láser. / LIGO/NSF

¿Qué pasa dentro de LIGO? En cada detector, un haz de luz láser se divide en dos y se envía por túneles iguales de vacío que miden 4 km de longitud y están dispuestos de forma perpendicular. Dentro hay unos interferómetros que hacen rebotar la luz láser entre espejos situados en los extremos de estos gigantescos tubos.

Si una onda gravitacional pasa por estos instrumentos, extienden y comprimen la longitud de los brazos junto con el resto del espacio. La luz de uno de los haces viaja un poco más allá que la del otro en una pequeñísima fracción del ancho de un átomo, y esto se puede medir. De hecho, los dos brazos funcionan como reglas de luz dispuestas en ángulo recto.

¿Tiene compañeros en otras partes del mundo? Desde LIGO se pasan notificaciones a 75 observatorios astronómicos de todo el mundo, que han acordado apuntar sus telescopios hacia cualquier punto del cielo para buscar y confirmar señales electromagnéticas correspondientes a posibles detecciones de ondas gravitacionales.

Este año está previsto que vuelva a funcionar el detector similar italo-francés Virgo, cerca de Pisa, que cerró en 2011 después de no observar nada durante años. La extensión de la red global de detectores incluye a LIGO –que estudia tener un tercer detector en India–, Advanced Virgo y KAGRA en Japón. Tener tres detectores conectados en línea permitiría triangular las fuentes de las ondas gravitacionales y abrir una nueva era en las observaciones astronómicas.

Zona geográfica: Internacional
Fuente: SINC

Comentarios

  • Alicia sintes |14. febrero 2016 18:50:25

    Faltan los créditos del video. El author es Sascha Husa de la universitat de les Illes Balears, de nuestro canal Youtube UIB@GRG.

    Responder a este comentario

  • Arnoldo Hinojosa |14. febrero 2016 18:52:04

    Muy interesante y a la vez fascinante sin embargo, no logro entender que utilidad tienen estos descubrimientos

    Responder a este comentario

    • Fernando Ruiz |16. febrero 2016 13:41:44

      Arnoldo, pues es dificil de saber. De momento la única aplicación que tiene es científica porque permitirá crear instrumentos de observación astronómica con lo que se puedan captar cosas que actualmente no se puede con los telescopios de luz visible, de infrarrojos, radiotelescopios, etc. Pero date cuenta de que cuando se puso en marcha el primer laser de rubí allá por 1960 se dijo que era "una solución a la espera de un problema" porque realmente no tenía aplicación práctica. Y fíjate ahora todo lo que se hace con el laser: faros de coche, cortadoras de metal, tratamientos de estética, cirugía, reproducción de música, instrumentos de medida... Hay incontables aplicaciones y además de usos muy diferentes. Por eso cuando se produce un nuevo descubrimiento es dificil saber que aplicación tendrá.

      Responder a este comentario

  • Juanjo Martín |14. febrero 2016 18:52:38

    A mí, a parte de comprender aunque sea superficialmente, me gustaría saber las posibles aplicaciones de este descubrimiento.

    Responder a este comentario

QUEREMOS SABER TU OPINIÓN

Por favor, ten en cuenta que SINC no es un consultorio de salud. Para este tipo de consejos, acude a un servicio médico.

AGENCIA SINC EN TWITTER