Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Química

Burbujas de champán para aumentar la eficiencia de las centrales eléctricas

Investigadores de Japón han conseguido simular el comportamiento de nucleación de las burbujas de cava con la ayuda del supercomputador más potente de su país. Conocer este proceso, que hace que las burbujas pequeñas se fusionen en otras más grandes, podría mejorar la eficiencia de las turbinas de centrales eléctricas, en las que se produce el mismo efecto.

Investigadores japoneses han conseguido observar, a través de millones de simulaciones efectuadas por ordenador, cómo las burbujas del vino espumoso realizan el proceso de nucleación. / RIKEN

Cuando se descorcha una botella de champán, de inmediato se forman burbujas, en un proceso donde las más pequeñas van engrosando en otras mayores. Este fenómeno se conoce como ‘maduración de Ostwald’, y también se produce en la generación de espuma y aleaciones metálicas.

Ahora, investigadores japoneses han conseguido observar, a través de millones de simulaciones efectuadas por ordenador, cómo las burbujas del vino espumoso realizan el proceso de fusión o nucleación.

Para realizar las simulaciones el equipo nipón ha utilizado el supercomputador K, capaz de realizar millones de cálculos simultáneos

Hasta ahora la tasa de nucleación de las gotas en condensación se ajustaba a una teoría clásica denominada LSW (por sus tres descubridores: Lifshift, Slyozov y Wagner), que explica bien la formación de sistemas líquidos o sólidos con la maduración de Ostwald como los cristales de hielo, pero no se había podido probar en estados donde aparece el gas.

“Aunque no lo esperábamos, hemos confirmado que el comportamiento de las burbujas también se puede describir con la teoría LSW”, explica a Sinc Hiroshi Watanabe, investigador asociado de la Universidad de Tokio y coautor del trabajo, que publica el Journal of Chemical Physics.

“De momento, nuestra investigación es ciencia básica y no tiene aplicaciones inmediatas, pero comprender el comportamiento de las burbujas es muy importante en ingeniería, y si lo conocemos en profundidad nos puede ayudar a fabricar centrales eléctricas más eficientes”.

Esto es porque la mayoría de las centrales eléctricas se basan en las calderas para convertir agua líquida en gaseosa. En la fase de transición, en la que el agua se convierte en vapor y se forman las burbujas, no se conocían los mecanismos que intervienen en ese proceso.

La tecnología más avanzada

Se ha podido observar la evolución de 700 millones de partículas utilizando 4.000 procesadores a la vez

Para realizar las simulaciones el equipo nipón ha utilizado el supercomputador K del Instituto Avanzado Riken para las Ciencias de la Computación, en Kobe (Japón). Actualmente es la máquina más potente del país, capaz de hacer millones de cálculos simultáneos.

"Antes era muy complicado investigar los núcleos de las burbujas a nivel molecular debido a la falta de potencia de cálculo", afirma Watanabe. "Ahora, tenemos ordenadores con sistemas capaces de alcanzar un rendimiento de más de mil billones de operaciones por segundo y que permiten enormes simulaciones."

Con la potente máquina se ha podido observar la evolución de 700 millones de partículas, siguiendo sus movimientos colectivos con 4.000 procesadores del equipo K a la vez.

El próximo paso de los investigadores es efectuar simulaciones moleculares en procesos de ebullición. Según Watanabe, gracias a los resultados de estos ensayos “se podrán fabricar generadores eléctricos más eficientes”.

Referencia bibliográfica:

Hiroshi Watanabe, Masaru Suzuki, Hajime Inaoka and Nobuyasu Ito, "Ostwald ripening in multiple-bubble nuclei". Journal of Chemical Physics (2014)

Fuente: SINC
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Un nuevo material muestra una fuerte acción contra hongos y tumores

Un equipo internacional de investigación de Castellón y Brasil ha desarrollado un material con propiedades antifúngicas y antitumorales. Para fabricarlo se ha utilizado óxido mixto de wolframio y plata irradiado con electrones y pulsos láser de femtosegundos.

Alt de la imagen
Identificados 17 compuestos clave del aroma de un vino

Investigadores de la Universidad de Córdoba, junto a colegas de Rumanía, han encontrado 17 compuestos que contribuyen al 95% del aroma de un vino rumano. El estudio se ha centrado en un caldo criado sin usar la barrica clásica, simplemente introduciendo fragmentos de madera en los depósitos.