Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Crean un plástico biodegradable a partir de la piel del tomate

Investigadores del Instituto de Ciencias Materiales de Sevilla (CSIC-US) y de la Universidad de Málaga (UMA) han creado un plástico biodegradable procedente de la piel de tomate con aplicaciones en el campo de la alimentación y salud.

Crean un plástico biodegradable procedente de la piel de tomate. Foto: Terry Dye

Los expertos andaluces tomaron como referencia el componente principal de la epidermis de la piel de este fruto: un biopoliéster denominado cutina que constituye la matriz de la capa cuticular que recubre la superficie de las hojas, tallos no lignificados y frutos de las plantas superiores. La función principal de este biopolímero es preservar la pérdida de agua desde el interior celular y de actuar como interfase entre la planta y el medio externo.

José Jesús Benítez Jiménez, responsable del proyecto, asegura que "la cutina se contempla como un producto biocompatible, biodegradable y no tóxico que la propia naturaleza emplea como capa protectora de frutos y hojas, y, por tanto, susceptible de ser adaptado artificialmente y empleado como material comercial para el envasado de alimentos". "Sorprendentemente, y a pesar de formar parte de tejidos vegetales muy diversos, el proceso evolutivo ha conducido a que la composición química de la cutina vegetal sea muy homogénea", subraya.

Entre las claves en el diseño de este nuevo material destacan las características bioquímicas en la formación de la piel. "Se trata de una ruta descrita que hemos empleado en la elaboración del producto final. Los monómeros, obtenidos con la manipulación de la piel en medio alcalino, poseen unas propiedades físico-químicas intrínsecas que lo convierten en los más adecuados para alcanzar el éxito en la operatividad del biopoliéster en el medio natural", apunta. "Tan solo hay que someter este producto final a determinadas condiciones físico-químicas para obtener un plástico que se ajuste a nuestras necesidades".

El material resultante es viscoelástico con un grosor "a la carta" y de color anaranjado. Es inocuo y biodegradable y su durabilidad es la misma que la de la piel del fruto. "En la actualidad estamos realizando pruebas mecánicas, de resistencia, elasticidad, transparencia y opacidad".

El propio Benítez apunta que el material de partida –en este caso el fruto de tomate-puede ser otro bien distinto. "La materia prima es gratis, puesto que son desechos industriales de la industria alimentaria. No obstante, en un futuro probaremos con otras", aclara.

Abundante y económico

Aunque la cutina es el material polimérico lipídico más abundante en la biosfera, y es conocido desde hace tiempo, su formación en las plantas a partir de los monómeros constituyentes no está bien descrita y se desconoce con exactitud en la actualidad.

Mecanismos basados en la participación directa o indirecta de una o varias enzimas sólo aportan datos sobre la síntesis de los monómeros en las células epidérmicas vegetales y sobre su transporte a la superficie de la hoja o fruto. Pero, una vez sintetizados los monómeros, se desconoce con exactitud cómo se ensamblan o unen químicamente entre sí para formar el biopoliéster cutina. En este sentido se ha aplicado una metodología basada en las técnicas de sonda de proximidad (SPM) que ha revelado dicha capacidad de interacción entre las moléculas de monómero.

La mayoría de los especialistas en cutícula vegetal aceptan un esquema en el que al final del desarrollo celular, y una vez depositadas las ceras cuticulares en forma cristalina en su parte más externa, comienza a generarse la cutina junto con la pared celular secundaria. Estas primeras capas de material de naturaleza lipídica que se depositan en la parte más externa de las células epidérmicas y que aparece en estadíos iniciales de desarrollo de las células epidérmicas de las hojas y frutos se denomina procutina. Se trata de una capa de estructura pseudolaminar y de espesor nanométrico que ha sido caracterizada por microscopía electrónica.

Fuente: Andalucía Innova
Derechos: Creative Commons
Artículos relacionados
Así se mueven millones de nanorrobotos dentro de ratones vivos
SINC

Como si fueran bandadas de pájaros o bancos de peces sincronizados, investigadores del Instituto de Bioingeniería de Cataluña y CIC biomaGUNE han observado por primera vez, mediante tomografía por emisión de positrones, cómo se mueve un enjambre de nanorrobots dentro de la vejiga de un ratón. El avance se podría aplicar en la futura medicina de precisión.

Cómo colocar el interruptor de espín más pequeño dentro de un nanotubo

Investigadores de IMDEA Nanociencia y otros centros españoles han logrado encapsular las llamadas ‘moléculas de espín cruzado’ dentro de nanotubos de carbono. Estas moléculas pueden cambiar su espín mediante estímulos como la temperatura, un hecho relevante para el desarrollo de dispositivos espintrónicos y en nanoelectrónica.