Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Hacia la memoria del futuro

Un equipo liderado por el CSIC ha logrado fabricar nanocables magnéticos en 3D y estudiar por primera vez sus propiedades. El nuevo método abre la puerta al desarrollo de memorias racetrack, llamadas a cambiar el modo en que se almacena y procesa la información.

Un equipo liderado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) ha conseguido fabricar nanocables magnéticos tridimensionales y ha estudiado por primera vez sus propiedades de forma directa.

El trabajo aparece publicado en la revista Nature Scientific Reports y podría cambiar el modo en que se almacena y procesa la información.

Los investigadores han empleado una técnica de nanofabricación que consiste en la descomposición –inducida por el haz de electrones de un microscopio electrónico de barrido–de las moléculas precursoras de un metal sobre una superficie.

A través de este método, denominado FEBID (siglas de Focused Electron Beam Induced Deposition), los científicos han obtenido nanoestructuras de cobalto en forma de espiral capaces de almacenar información.

En 2008, el científico estadounidense Stuart Parkin ideó el concepto de un nuevo tipo de memoria magnética –racetrack– basada en nanocables magnéticos tridimensionales. Estos dispositivos podrían llegar a tener capacidades de almacenamiento mucho mayores que los actuales y su consumo de energía sería muy bajo.

“Hasta ahora, estas memorias no se habían podido desarrollar por no disponer de una técnica eficaz. La técnica FEBID es quizá la mejor candidata para la fabricación de estas memorias”, asegura José María de Teresa, investigador del CSIC en el Instituto de Ciencia de Materiales de Aragón, un centro mixto del CSIC y la Universidad de Zaragoza.

Memoria nanométrica

Para conseguir que las nanoestructuras tuviesen forma de espiral, los investigadores giraron el soporte sobre el que crecían al mismo tiempo que desplazaban o barrían el haz de electrones en diferentes direcciones.

“El segundo reto ha sido conseguir que los nanocables tengan un alto contenido en material magnético. Para ello hemos buscado el balance adecuado entre el flujo de gas que usamos para hacer crecer el cobalto y la densidad de la corriente de electrones que disocia el gas”, señala el investigador del CSIC.

Tras ser fabricadas en el Instituto de Nanociencia de Aragón, el siguiente paso fue estudiar sus propiedades magnéticas mediante magnetometría Kerr. Estos experimentos han permitido determinar por primera vez los campos magnéticos necesarios para generar y mover, en las estructuras tridimensionales, las paredes de dominio, fronteras entre las diversas regiones magnéticas de los nanocables, donde se almacena la información.

Referencia bibliográfica:

Amalio Fernández‐Pacheco, Luis Serrano‐Ramón, Jan Michalik, M. Ricardo Ibarra, José M. De Teresa,Liam O’ Brien, Dorothée Petit, Jihyun Lee, Russell P. Cowburn. Three dimensional magneticnanowires grown by focused electron‐beam induced deposition. Nature Scientific Reports. DOI:10.1038/srep01492.

Fuente: CSIC
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Ninguna gafa hace ver nuevos colores a los daltónicos, según un análisis computacional

Usando simulaciones por ordenador, investigadores de la Universidad de Granada han comprobado que algunos filtros de color aumentan ligeramente los colores que se pueden discernir, pero la mejora es insignificante y el incremento no hace que las personas daltónicas perciban el mismo número de colores que las que no padecen este trastorno.

Alt de la imagen
Radiografías de tórax para detectar la COVID-19

Usando un algoritmo de inteligencia artificial, dos estudiantes de ingeniería han desarrollado un modelo que reconoce una infección por coronavirus con hasta un 97 % de precisión en radiografías torácicas. La herramienta está disponible on line para ayudar a los profesionales sanitarios en su diagnóstico de pacientes.