No podrás conectarte si excedes diez intentos fallidos.
La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.
Selecciona el tuyo:
Un equipo de neurocientíficos del CSIC ha descubierto que los astrocitos, un tipo de células del cerebro, están implicados un proceso que permite borrar información que ya no es importante y reemplazarla por nuevos acontecimientos o situaciones. Este hallazgo podría abrir la vía a nuevas líneas de investigación para terapias contra la enfermedad de Alzheimer.
Los astrocitos, un tipo de células cerebrales, son los responsables de debilitar las sinapsis entre las neuronas del hipocampo, la región del cerebro implicada en procesos de memoria. A esta conclusión ha llegado este estudio, que se publica en la revista Nature Communications, y que ha sido liderado por el Centro de Biología Molecular Severo Ochoa (CMBSO) y el Instituto Cajal, centros mixtos con el Consejo Superior de Investigaciones Científicas (CSIC).
El cerebro es un conjunto organizado de células que recibe, procesa, transmite y almacena información. Una de las propiedades más singulares del cerebro es su plasticidad. Cuando recibimos nueva información que queremos retener, en forma de memoria, las neuronas que transmiten esta información refuerzan sus conexiones, llamadas sinapsis. Gracias a esta forma de plasticidad sináptica, somos capaces de aprender y memorizar. Sin embargo, las conexiones sinápticas también pueden debilitarse.
“Es necesario borrar información que ya no es relevante y reemplazarla por nuevos acontecimientos o situaciones. Esta capacidad se conoce como flexibilidad cognitiva, y por ejemplo, es la razón por la que normalmente recordamos dónde dejamos el coche aparcado hoy, pero no dónde aparcamos ayer o la semana pasada. Sin esta forma de borrado selectivo, almacenaríamos multitud de memorias solapantes y contradictorias en el cerebro”, explica el investigador Jose A. Esteban, del Centro de Biología Molecular Severo Ochoa (CSIC y UAM).
Precisamente esta forma de borrado selectivo está agudizada en situaciones patológicas, como en la enfermedad de Alzheimer, y se relaciona con la pérdida de memoria. Por ello, entender los mecanismos del borrado y reescritura de memorias puede ser importante para desarrollar nuevas estrategias terapéuticas contra dicha dolencia.
Hasta ahora, se había asumido que las neuronas eran las únicas responsables de remodelar sus conexiones sinápticas, tanto para reforzarlas como para debilitarlas.
“En los últimos años se ha demostrado que las células de glía, a las que se atribuía la función de sostener y alimentar a las neuronas, también participan en la comunicación sináptica. En este estudio hemos visto que un tipo de células de glía, los astrocitos, actúan como intermediarios en la comunicación entre las neuronas, para producir la depresión sináptica”, añade la investigadora Marta Navarrete, del Instituto Cajal.
Para llevar a cabo este estudio, los investigadores han combinado avanzadas técnicas experimentales de electrofisiología, optogenética, microscopía y comportamiento animal. Los resultados demuestran que para debilitar las sinapsis, las neuronas primero activan señales en los astrocitos que desencadena un proceso en el que está implicada la proteína p38α MAPK.
Durante los experimentos, cuando se eliminó el gen de la p38α MAPK exclusivamente en los astrocitos, y no en las neuronas, del hipocampo, se produjo un aumento en la retención de memoria a largo plazo en los ratones.
“De esta forma, se consolida la idea de que los astrocitos desempeñan un papel integral en el almacenamiento y la eliminación de información en el cerebro”, concluye la investigadora.
Esta investigación se ha realizado con el apoyo de una Beca Leonardo a Investigadores y Creadores Culturales de la Fundación BBVA en el área de Biomedicina. También ha recibido financiación del Ministerio de Economía y Competitividad y del programa For Woman in Science de L’Oreal en colaboración con la UNESCO.
Marta Navarrete, José A. Esteban et al. “Astrocytic p38α MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory”. Nature Communications. DOI: 10.1038/s41467-019-10830-9