Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Nuevos recubrimientos autolubricantes para aplicaciones aeroespaciales

Investigadores del Consejo Superior de Investigaciones Científicas y del centro IK4-Tekniker han desarrollado un nuevo recubrimiento de selenio y wolframio que mejora su respuesta al rozamiento en condiciones ambientales, como las que soportan las naves espaciales. La capa lubricante es estable durante las etapas de almacenamiento y durante la puesta en órbita.

Los investigadores han confirmado en el laboratorio las ventajas del nuevo lubricante. / IK4-Tekniker

Un equipo de investigadores del Consejo Superior de Investigaciones Científicas (CSIC) ha creado un nuevo tipo de recubrimiento lubricante para aplicaciones aeroespaciales que mejora su respuesta al rozamiento en el vacío. Los resultados del trabajo, en el que ha colaborado el centro vasco IK4-Tekniker, se publican en la revista ACS Applied Materials and Interfaces.

“Estas nuevas capas están compuestas a base de selenio y wolframio, que son menos sensibles al oxígeno y la humedad que otros materiales convencionales, como el sulfuro de molibdeno”, según explica Juan Carlos Sánchez-López, investigador del Instituto de Ciencias de Materiales de Sevilla (CSIC).

El lubricante es estable durante la puesta en órbita de las naves, cuando atraviesan la atmósfera

“Este sistema es capaz de proporcionar coeficientes de fricción inferiores a 0,1, incluso en condiciones atmosféricas”, añade el experto. Esto permite que el lubricante sea estable durante la etapa de almacenamiento y puesta en órbita, cuando debe atravesar la atmósfera.

Este nuevo lubricante tiene una estructura laminar, como el grafito, donde hay capas formadas por átomos fuertemente enlazados, separadas entre sí por débiles fuerzas, explica el investigador. Este hecho posibilita un fácil desplazamiento entre estas láminas y justifica sus excelentes propiedades lubricantes.

“La mayor desventaja que presentan estas estructuras es la degradación de este comportamiento lubricante por efecto de la oxidación en presencia de aire y/o humedad ambiental; y otras limitaciones son su baja dureza y adherencia sobre los substratos sobre los que se depositan”, advierte Sánchez López.

El lubricante cuenta con una capa superficial formada por nanocristales en una matriz formando una estructura nanocomposite. “Gracias a su diseño a medida se logra una progresiva gradación en propiedades: duro y metálico en su base (que le proporciona buena adherencia al sustrato y soporte mecánico); blando y lubricante en su región más superior (aportándole carácter lubricante)”, detalla el investigador.

Referencia bibliográfica:

S. Domínguez-Meister, M. Conte, A. Igartua, T.C. Rojas, J.C. Sánchez-López. "Self-lubricity of WSex nanocomposite coatings". ACS Applied Materials and Interfaces, 2015. DOI: 10.1021/am508939s

Fuente: CSIC
Derechos: Creative Commons
Artículos relacionados
Un robot camaleón se camufla con el fondo en tiempo real

Investigadores coreanos han desarrollado una tecnología que permite a un robot cambiar inmediatamente el color de su piel según el que tenga debajo. La técnica se podría aplicar en el camuflaje militar o el desarrollo de prendas textiles inteligentes.

Inesperada observación de ondas térmicas en materiales semiconductores

Investigadores del instituto ICMAB y la Universidad Autónoma de Barcelona han analizado la respuesta térmica del germanio, un material semiconductor, bajo los efectos de un láser; y en contra de lo que se creía hasta ahora, el calor no se ha disipado por difusión, sino que se ha propagado a través de ondas térmicas por el material. El descubrimiento podría ayudar a mejorar el rendimiento de los dispositivos electrónicos.