Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Científicos de Granada miden la fuerza nuclear fuerte con la mayor precisión hasta la fecha

Investigadores granadinos han determinado la magnitud más precisa de la interacción nuclear fuerte, responsable de la fusión en el interior del Sol, y proponen una nueva forma para la fuerza nuclear, denominada potencial granulado. En su estudio han utilizado más de 8.000 datos experimentales de dispersión entre neutrones y protones.

La interacción nuclear fuerte es la responsable de la fusión en el interior del Sol. / Nasa
Científicos de Granada miden la fuerza nuclear fuerte con la mayor precisión hasta la fecha. Foto: NASA

Investigadores granadinos han determinado la magnitud más precisa de la interacción nuclear fuerte, responsable de la fusión en el interior del Sol, y proponen una nueva forma para la fuerza nuclear, denominada potencial granulado. En su estudio han utilizado más de 8.000 datos experimentales de dispersión entre neutrones y protones.

Científicos de la Universidad de Granada (UGR) han llevado a cabo la determinación más precisa lograda hasta la fecha de la fuerza nuclear, utilizando para ello más de 8.000 datos experimentales de dispersión entre neutrones y protones, recogidos entre los años 1950 y 2013 en aceleradores de partículas de todo el mundo.

Este trabajo ha sido publicado recientemente en la revista Physical Review que edita la Sociedad de Física Estadounidense, y su importancia ha sido resaltada por el editor, que lo ha seleccionado como artículo recomendado. La investigación se realizó íntegramente en la UGR por Rodrigo Navarro Pérez, Enrique Ruiz Arriola yJosé Enrique Amaro, físicos del grupo de investigación Hadrónica del departamento de Física Atómica, Molecular y Nuclear e Instituto Carlos I de Física Teórica y Computacional.

En su trabajo, los investigadores granadinos proponen una nueva forma para la fuerza nuclear, que han denominado “potencial granulado”. Tras el análisis estadístico de los más de 8.000 datos, determinaron que sus resultados tienen una precisión media del 96%.

Error estadístico

“La importancia de nuestra investigación reside en que no sólo hemos obtenido el potencial nuclear, sino también su error estadístico teórico –explica el profesor José

Enrique Amaro Soriano, uno de los autores del artículo–. Esto permite establecer límites en la precisión con que se puede conocer empíricamente la interacción fuerte, ya que los datos experimentales están sujetos a un error. Dichos errores limitan la precisión con la que las teorías físicas actuales pueden describir los núcleos atómicos”.

El nuevo potencial granulado facilitará el estudio de las propiedades de la interacción fuerte, como la independencia de carga de las fuerzas nucleares, o la validez de las modernas teorías quirales (aproximaciones de la cromodinámica cuántica para baja energía). Además, se puede utilizar para calcular teóricamente las propiedades de los núcleos atómicos, como su energía interna, permitiendo conocer además el error teórico intrínseco, debido al desconocimiento parcial de la interacción fuerte, lo que hasta ahora era una incógnita.

El profesor de la UGR explica que “las cuatro fuerzas fundamentales de la física son la interacción gravitatoria, la interacción electromagnética, la interacción débil y la interacción fuerte. Estas cuatro fuerzas son esenciales para nuestra existencia. La fuerte es la interacción más intensa de las cuatro y es la que mantiene unidos los núcleos atómicos”.

La interacción fuerte es la responsable de la fusión termonuclear que tiene lugar en el interior de las estrellas a partir de hidrógeno. Sin esa fuerza, el Sol no podría emitir radiación. “En Física, el conocimiento de la interacción fuerte es esencial para entender y describir los procesos que tienen lugar en el interior de los núcleos”, apunta Amaro.

Referencia bibliográfica:

R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola. "Coarse-grained potential analysis of neutron-proton and proton-proton scattering below the pion production threshold". Physical review C, número 88, página 064002, dic. 2013.

Fuente: UGRdivulga
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Nobel de Física para tres investigadores que abrieron nuevos caminos hacia los agujeros negros

La Real Academia Sueca de las Ciencias ha otorgado el Premio Nobel de Física 2020 al británico Roger Penrose por descubrir que la formación de un agujero negro es una predicción sólida de la teoría general de la relatividad y al alemán Reinhard Genzel y la estadounidense Andrea Ghez, cuarta mujer en obtener este galardón, por encontrar un objeto supermasivo de este tipo en el centro de nuestra galaxia.

Alt de la imagen
Galardones otorgados por la RSEF y la Fundación BBVA
Giro ‘mágico’ del grafeno y baterías de papel en los Premios de Física 2020

La Medalla de la Real Sociedad Española de Física de este año ha recaído en el investigador Pablo Jarillo del MIT por el descubrimiento de la superconductividad en capas de grafeno giradas, y el Premio de Física, Innovación y Tecnología en la científica Neus Sabaté del CSIC, inventora de unas baterías biodegradables para sistemas de diagnóstico, como los test de coronavirus.