Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Nuevas claves del fondo cósmico gamma

Investigadores del Consejo Superior de Investigaciones Científicas y otros centros internacionales han analizado, mediante datos astrofísicos y simulaciones, el origen de los rayos gamma del fondo cósmico. El estudio de este fenómeno en un rango de energía concreto ha facilitado información inédita sobre la materia oscura.

Observatorio de Rayos Gamma Compton. / NASA

El fondo cósmico de rayos gamma es la emisión de alta energía que se produce más allá de nuestra galaxia. Su estudio ayuda a avanzar en el conocimiento de la materia oscura, que supone un 26% del universo, según los últimos datos del satélite Planck de la ESA.

Por su parte, la materia ordinaria –la compuesta de átomos– solo representa el 5%. Los científicos consideran que en el universo puede haber partículas de materia oscura que se van desintegrando y forman parejas de partícula y antipartícula, que se aniquilan generando rayos gamma.

En este contexto un equipo internacional de investigadores liderado por el Consejo Superior de Investigaciones Científicas (CSIC) ha analizado los rayos gamma del fondo cósmico en el rango de los megaelectronvoltios (MeV), aproximadamente el doble de la energía de un electrón o a la milésima de la masa de un protón.

Se ha descartado que haya indicios de aniquilación de materia oscura en el rango de los megaelectronvoltios

De esta forma han descartado que, como se creía, haya indicios de aniquilación de materia oscura en ese rango, según publican en The Astrophysical Journal. El equipo plantea que la explicación a esa emisión de energía se puede corresponder a los cuásares, es decir, a núcleos brillantes de galaxias lejanas que contienen gigantescos agujeros negros en el centro.

Los expertos han llegado a esta conclusión tras recopilar numerosos datos sobre objetos astrofísicos y realizar simulaciones que posteriormente se han contrastado con los registros observacionales, entre ellos los recogidos por el Observatorio de Rayos Gamma Compton de la NASA, lanzado en 1991.

En las simulaciones, los investigadores se han basado en la distribución de supernovas a lo largo del universo, ya que estas podrían explicar la emisión de rayos gamma en el rango de energía estudiado. Han considerado la emisión de rayos gamma de distintos tipos de galaxias.

“Hasta la fecha no se habían realizado unas simulaciones tan exactas”, señala Pilar Ruiz-Lapuente, investigadora del CSIC en el Instituto de Física Fundamental. “Al basar nuestros cálculos en los ritmos de producción de las supernovas y la distribución y luminosidad gamma de otros objetos a lo largo del universo, los datos más relevantes hasta el momento, hemos encontrado que los cuásares de espectro plano son los más compatibles con el tipo de emisión estudiado”.

El trabajo ha contado con la colaboración, entre otros, de científicos de la Clemson University (Estados Unidos), el Instituto Max Planck (Alemania) y el Institut de Ciències del Cosmos, de Barcelona.

Referencia bibliográfica:

P. Ruiz-Lapuente, L. The, D. H. Hartmann, M. Ajello, R. Canal, F. K. Röpke, S. T. Ohlmann y W. Hillebrandt. “The origin of the cosmic gamma-ray background in the mev range”. The Astrophysical Journal, 2016. DOI: 10.3847/0004-637X/820/2/142.

Fuente: CSIC
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Un planeta de la vecina estrella Luyten podría tener la capacidad de albergar vida

Astrónomos europeos y americanos han descubierto que la estrella GJ 273, una de las más cercanas a la Tierra y conocida como Luyten, tiene un sistema planetario con dos planetas confirmados, uno de ellos en la zona de habitabilidad, y otros dos muy probables.

Alt de la imagen
Un cataclismo cósmico para investigar la naturaleza cuántica del espacio-tiempo

El colosal estallido de rayos gamma que captó el año pasado el telescopio MAGIC desde Canarias ha ayudado a estudiar si la velocidad de la luz en el vacío es una constante de la naturaleza. De momento ha servido para poner un límite a la hipótesis de que la velocidad de los fotones depende de su energía, como predicen algunos modelos de gravedad cuántica.