Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Protones y neutrones para testar circuitos electrónicos

Investigadores del Centro Nacional de Aceleradores, en Sevilla, han probado circuitos electrónicos con la ayuda de protones y neutrones. En concreto, han inducido errores en componentes electrónicos para verificar su funcionamiento.

Semiconductor complementario de óxido metálico (CMOS), una una de las familias lógicas usadas en la fabricación de circuitos integrados. / Wikipedia

Mediante el uso de tecnologías nanométricas se ha conseguido mejorar los sistemas electrónicos, llevándolos a tamaños mucho más compactos y sistemas con respuestas más rápidas, de tal modo que la radiación ionizante se ha convertido en un inconveniente a la hora de trabajar con estos minúsculos sistemas, de tal modo partículas alfa, neutrones, protones, iones pesados ​​y otros las partículas pueden interactuar con estos dispositivos afectando su comportamiento.

Cuando una o más células de memoria están dañadas por la radiación, los datos almacenados se pueden perder o estar irreparablemente dañados. Por estas razones, resulta crítico analizar el impacto del error suave en la tasa de error global del sistema de las memorias estáticas.

Los investigadores han inducido errores en componentes electrónicos para verificar el funcionamiento de los circuitos

Las células de 6 transistores (6T) mejoran el modo de lectura al enfriar los transistores de paso de acceso pero precisamente se busca lo contrario, es decir, mejorar la capacidad de escritura. Para ello, se han propuesto estructuras celulares alternativas para superar las limitaciones de las células 6T, de tal modo que las células 8T están siendo adoptadas como una alternativa a la célula 6T en diseños industriales.

Las principales fuentes de radiación causantes de errores suaves en los componentes microelectrónicos son los neutrones, en especial de alta energía, y los iones, principalmente las partículas alfa. Los neutrones no son partículas directamente ionizantes, sin embargo, pueden interactuar con los átomos Silicio-28 y otros elementos, creando partículas fuertemente ionizantes (como la partícula alfas y los protones). Por tanto lo neutrones crean una ionización secundaria. Estas partículas secundarias pueden ser generadas en cualquier parte del material semiconductor y terminar incidiendo en los transistores.

En este contexto, investigadores del Centro Nacional de Aceleradores (CNA) han comparado la tasa de error 'suave' en circuitos integrados de 6T y 8T con fuentes de irradiación de protones y neutrones. Los resultados los han publicado en la revista Microelectronics Reliability. Se han utilizado protones de la línea de haz externo del Ciclotrón y neutrones generados con el acelerador Tándem.

Ventajas de 8T frente al estándar 6T

Los datos han mostrado que, independientemente del número de transistores que componen las células de memoria 6 u 8, el número total de eventos registrados es bastante similar en la medida en que los dispositivos tienen el mismo tamaño. Sin embargo, el porcentaje del llamado MBU (Multiple Bit Upset), es claramente mayor en 6T que en 8T. Por lo tanto, se puede concluir que una ventaja adicional de 8T sobre el estándar 6T es que proporcionan un mejor rendimiento frente a la radiación.

El CNA es la primera instalación en realizar estudios de daño en componentes electrónicos con neutrones de alta energía producidos con un acelerador de media-baja potencia. Normalmente este tipo de estudios se realizan en grandes instalaciones con neutrones producidos por el impacto de protones de muy alta energía provenientes de aceleradores de alta potencia sobre blancos refrigerados de plomo o tántalo, lo cual supone un aumento de los costes muy importante.

En este estudio han participado miembros de la Universidad de las Islas Baleares, Universidad de Granada, Universidad de Sevilla y el Centro Nacional de Aceleradores.

Referencia bibliográfica:

D. Malagón, S.A. Bota, G. Torrens, X. Gili, J. Praena, B. Fernández, M. Macías, J.M. Quesada, Carlos Guerrero Sanchez, M.C. Jiménez-Ramos, J. García López, J.L. Merino, J. Segura. "Soft error rate comparison of 6T and 8T SRAM ICs using mono-energetic proton and neutron irradiation sources". Microelectronics Reliability 78, 38-45 (2017) http://dx.doi.org/10.1016/j.microrel.2017.07.093

Fuente: Centro Nacional de Aceleradores (CNA)
Derechos: Creative Commons
Artículos relacionados
Comprueban que hay que mejorar los modelos de los neutrinos, esenciales para entender el origen del universo
EFE

Los neutrinos pueden ser claves para resolver el misterio de los inicios del cosmos, pero primero hay que hacer “importantes actualizaciones” en los modelos, advierte esta semana un grupo de físicos en la revista Nature tras realizar experimentos más sencillos con otras partículas, los electrones. 

Un estudio señala que la distancia de 2 metros frente a la covid-19 es una medida arbitraria

Una persona con coronavirus y sin mascarilla puede infectar a otra situada a dos metros, incluso al aire libre. Lo lejos que llegan las gotitas emitidas al toser depende de su tamaño, pero también de las condiciones del entorno, según las simulaciones realizadas por ingenieros de la Universidad de Cambridge, quienes recomiendan considerar esta gran variabilidad a la hora de establecer medidas de seguridad.