Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Un modelo matemático predice la expansión de los virus en función de los vuelos entre ciudades

Madrid puede estar más cerca de Londres que de Málaga si el que se desplaza entre las urbes es un virus. Investigadores alemanes han desarrollado un método basado en los sistemas complejos que se basa en el tamaño de las ciudades y la frecuencia de sus conexiones aéreas para predecir el avance de una enfermedad contagiosa.

Simulación del mundo según el modelo matemático, con la ciudad de Madrid como referencia./ Dirk Brockmann

Para un virus como el H1N1, causante de la pandemia de gripe de 2009, Madrid está más cerca de Londres de lo que dicen los mapas. Investigadores alemanes han diseñado un modelo matemático que sustituye la distancia geográfica por una basada en el tamaño de las ciudades y la frecuencia de sus vuelos. El programa predice así el origen y la expansión de una enfermedad.

Los autores del estudio, publicado esta semana en la revista Science, han considerado los caminos más probables que seguirían los virus dentro de la red de vuelos de todo el mundo.

"El método puede mejorar los que ya existen para predecir la propagación de una enfermedad y entender la expansión de virus informáticos", indica Brockmann

Estos expertos basan su modelo, que explica la dinámica global de expansión de de enfermedades, en la idea de que en un mundo tan conectado como el actual, las distancias geográficas ya no pueden ser la base de los patrones de expansión de los virus.

“El método sirve para fenómenos contagiosos que se propagan a través de una red, entre ellos las enfermedades altamente infecciosas”, indica a SINC Dirk Brockmann, uno de los autores del trabajo e investigador de la Universidad de Humboldt en Berlín (Alemania).

Así, esta teoría computacional puede encontrar los lugares donde llegará una epidemia en primer lugar o la velocidad con la que lo hará, sin tener en cuenta las características particulares del patógeno que la provoca.

“Hay patrones que se pueden predecir sin el conocimiento de parámetros específicos como la tasa de infección y la de recuperación”­, señala Brockmann. Aunque la velocidad de propagación depende de estas variables, la forma en que el contagio se distribuye por una red es siempre el mismo.

Los ensayos han permitido simular adecuadamente la dinámica seguida por el virus de la gripe H1N1 en 2009 o el Síndrome Respiratorio Agudo Severo (SARS, en sus siglas en inglés), otra enfermedad vírica que causó estragos en 2003.

Los ensayos han permitido simular la dinámica del virus de la gripe H1N1 en 2009 y el SARS en 2003

“Consideremos tres lugares como Madrid, Londres y una ciudad española más pequeña con un aeropuerto que conecta con Madrid, por ejemplo, Málaga –explica el investigador alemán–. Con un mismo número de madrileños infectados, habrá una mayor cantidad de ellos que viajen a Londres, por lo que la capital británica está más cerca, aunque aparezca lejos en el mapa”.

“En otras palabras, si una infección comienza en un lugar remoto, alcanzará rápidamente las principales ciudades –continúa Brockmann–. Sin embargo, si se inicia en una gran población llegará rápidamente a otras localizaciones importantes, pero no necesariamente a sitios remotos”.

Los autores indican que el modelo y la simulación matemática que han diseñado pueden utilizarse para adelantarse a las consecuencias de una enfermedad y frenar así su avance.

“En el futuro, esperamos que nuestro método pueda mejorar los que ya existen para predecir la propagación de una enfermedad y ayudar a entender otros fenómenos como la expansión de virus informáticos o la transmisión de información”, concluye el científico.

Referencia bibliográfica:

Dirk Brockmann and Dirk Helbing. “The Hidden Geometry of Complex, Network-Driven Contagion Phenomena”. Science, 12 de diciembre de 2013.

Fuente: SINC
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Una variante del SARS-CoV-2 predominante en la segunda ola europea apareció primero en España

Un reciente estudio —aún no revisado— ha encontrado que la versión del virus ahora mayoritaria en varios países europeos procede de España. Nada apunta a que la infectividad de esta variante sea mayor, pero implica que “las restricciones a los viajes impuestas durante el verano” no bastaron para contener la pandemia.

Alt de la imagen
Un solo genotipo del coronavirus disparó los casos en España durante marzo

Un análisis de la diversidad genómica del SARS-CoV-2 ha identificado más de 500 entradas en el país a comienzo de la pandemia, pero solo unos pocos linajes llegaron a propagarse masivamente gracias a eventos de superdispersión, como partidos de fútbol y funerales. Uno de los genotipos generó el 30 % de todos los casos, llegando a representar un 60 % en la primera semana de marzo.