No podrás conectarte si excedes diez intentos fallidos.
La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.
Selecciona el tuyo:
Investigadores europeos han analizado las nanopartículas de una fase poco común del óxido de hierro, llamada fase épsilon, bajo condiciones extremas de presión parecidas a las del interior de la Tierra. El estudio revela que esa fase rara podría encontrarse en el interior de nuestro planeta. Además, bajo esas condiciones aparece otra fase, la épsilon prima, con propiedades magnéticas radicalmente distintas a las conocidas y que se podrían aplicar en nuevos dispositivos.
La dificultad para acceder a las partes más interiores de la Tierra implica una ausencia de estudios experimentales directos sobre los minerales y compuestos que controlan la geodinámica y el geomagnetismo. La Tierra está principalmente formada por seis elementos: magnesio, aluminio, silicio y hierro, en combinación con hidrógeno y oxígeno. Así, todos los estudios sobre materiales que contengan estos elementos en las condiciones apropiadas pueden abrir nuevas vías de investigación que buceen en los misterios del interior del planeta.
Ahora, un equipo de investigadores de la Universidad Politécnica de Valencia (UPV), el Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) y del European Synchrotron Radiation Facility (ESRF) ha llevado a cabo un estudio, publicado en Nature Communications, que revela que la fase épsilon del óxido de hierro (hasta ahora considerada rara) se puede encontrar en las capas internas de la Tierra.
En su trabajo, los investigadores han caracterizado el comportamiento estructural, electrónico y magnético de nanopartículas de óxido de hierro en fase épsilon bajo condiciones extremas de presión. Este tratamiento ha llevado al descubrimiento de la nueva fase épsilon prima, con unas propiedades magnéticas desconocidas hasta ahora.
“Desde el punto de vista geofísico este hallazgo es muy relevante. Abre la puerta a que esta fase épsilon se pueda encontrar en el interior de la Tierra. Por otro lado, se ha descubierto una nueva fase del óxido de hierro (bajo altas presiones) que contiene unas propiedades magnéticas distintas a las que se pueden obtener actualmente. Y tener un material con dichas propiedades haría que se tuvieran que modificar los modelos geodinámicos que conocemos”, apunta Juan Ángel Sans, investigador Ramón y Cajal del grupo EXTREMAT del Instituto de Diseño y Fabricación (IDF) de la UPV.
Estable a altas presiones
“Nos ha sorprendido que la fase épsilon fuera estable a tan altas presiones, hasta 27 gigapascales (GPa), y que por encima de esta presión apareciese esta nueva fase, cuyas propiedades magnéticas aún no conocemos bien” apunta Martí Gich, investigador del ICMAB-CSIC. “Esta estabilidad a altas presiones indica que debe ser posible incorporar otros elementos en proporciones elevadas dentro de la fase épsilon, con lo que se espera poder controlar sus propiedades y prestaciones”, añade.
Los resultados del estudio desarrollado por los investigadores de la UPV, el ICMAB y el ESRF permiten completar la visión del comportamiento del óxido de hierro e indican que la presencia de este material en el interior de la Tierra es posible.
El estudio ha sido financiado por el Ministerio de Ciencia, Innovación y Universidades, la Generalitat de Catalunya, y por el proyecto Severo Ochoa de Excelencia Científica del ICMAB-CSIC.
Imagen representativa de las diferentes medidas y cálculos que se han realizado sobre las nanopartículas de epsilon-Fe2O3. / ICMAB-CSIC
Referencia bibliográfica:
Sans, J. A. Monteseguro, V., Garbarino, G. Gich, M. Cerantola, V., Cuartero, V. Monte, M., Irifune, T., Muñoz, A., Popescu, C., "Stability and nature of the volume collapse of ε-Fe2O3 under extreme conditions". Nature Communications, 2018. https://doi.org/10.1038/s41467-018-06966-9