Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Buscan blanquear el papel con una proteína

Un grupo de investigación de la Universidad Complutense de Madrid estudia cómo hacer más estable térmica y químicamente a la xilanasa, una proteína de potencial importancia biotecnológica en el blanqueamiento del papel.

El blanqueo definitivo se realiza con productos químicos que pueden generar residuos organoclorados muy tóxicos, lo que lleva a las fábricas de papel a efectuar tratamiento de vertidos. Imagen: Omar Santamaría

Cuando utilizamos una hoja de papel no pensamos en el proceso de fabricación del mismo, salvo en lo relativo a la materia prima de la que procede, la madera, experimentando una vaga sensación de contribuir a deforestar el planeta, para desecharla a continuación. Solemos preferir que el papel sea blanco, pero no pensamos en las consecuencias que el blanqueamiento de la pasta de papel tiene para el medio ambiente.

La pasta de papel contiene celulosa, hemicelulosa y lignina siendo la lignina la responsable de su color marrón oscuro. Su blanqueamiento químico tradicional combina un pretratamiento con álcali con un preblanqueamiento con oxígeno resultando una pasta de papel amarillenta. El blanqueo definitivo se realiza con productos químicos que pueden generar residuos organoclorados muy tóxicos, lo que lleva a las fábricas de papel a efectuar tratamiento de vertidos.

En la pasta de papel, la lignina se encuentra anclada a la hemicelulosa, por lo que si eliminamos esta, la lignina se desprende de la pasta con facilidad y al necesitarse menos agentes químicos para blanquearla, disminuye la toxicidad de los vertidos. Nuestro objetivo es quitarle ese anclaje a la lignina y para hacerlo hay que conseguir degradar el xilano, que es el componente mayoritario de la hemicelulosa. La clave está en una proteína: la xilanasa.

Blanqueamiento de la pasta de papel con xilanasa.

Pero ¿cómo obtenemos la xilanasa? La historia se remonta a 1944, cuando la investigadora del ejército de los Estados Unidos, Mary Mandels, aisló el hongo filamentoso Trichoderma reesei de los uniformes de los soldados destinados en las islas Salomón, que se llenaban de agujeros. Los uniformes eran de algodón (celulosa prácticamente pura) y el hongo crecía a base de fabricar unas proteínas, las celulasas, con las que “digería” los uniformes. En la década de los 80 se envió una muestra de un mutante de este hongo hiperproductor de celulasas (Trichoderma reesei QM 9414) a la Universidad Complutense de Madrid.

Los departamentos de Bioquímica y de Ingeniería Química de la Facultad de Químicas comenzaron a estudiar las celulasas que producía el hongo cuando crecía, no sobre telas de algodón, sino sobre paja de trigo. Al sustituir el algodón por la paja se obtenía el hongo y al mismo tiempo se daba salida a los residuos agrícolas generados tras cosechar el trigo. Pero la utilización de paja presentaba una ventaja adicional ya que además de celulosa, contiene xilano y el hongo producía xilanasa para digerirlo. Este hecho ha permitido dar un golpe de timón en la década actual y comenzar a obtener la xilanasa en el departamento de Bioquímica bajo la dirección de la Dra. Pilar Estrada.

Puesto que la utilización industrial de la xilanasa se hace complementando los procesos químicos tradicionales, la xilanasa debe funcionar a temperaturas altas y en medios que la inactivan. Nuestros estudios se centran en su estabilización buscando aditivos que la hagan más estable a temperaturas altas, como los polialcoholes (xilitol, sorbitol, etc.) y más resistente a productos químicos agresivos.

Además del blanqueamiento de la pasta de papel, la xilanasa favorece la digestibilidad de los piensos animales al reducir su viscosidad, aumenta el volumen del pan al hacer que la harina sea más ligera y el pan más blando, elimina el aspecto fangoso de la cerveza al disminuir su viscosidad y clarifica los zumos de frutas por el mismo motivo. Finalmente, su utilización en la industria textil para blanquear las fibras permite reducir el tratamiento químico convencional y disminuir los vertidos tóxicos. Por todo esto, la xilanasa es, hoy en día, una de las proteínas más interesantes desde el punto de vista industrial y nuestros estudios sobre su estabilidad química y térmica contribuirán a mejorar sus aplicaciones biotecnológicas y por tanto a preservar el medioambiente.

Esta noticia ha sido merecedora de uno de los premios en la modalidad de noticia científica del III Concurso de Divulgación Científica de la Universidad Complutense de Madrid (2010).

---------------------------------------

Referencias bibliografías:

Cobos A., Estrada P. (2003), Effect of polyhydroxylic cosolvents on the thermostability and activity of xylanase from Trichoderma reesei QM 9414. Enzyme Microb. Technol. 33:810-818. DOI:10.1016/S0141-0229(03)00220-5.

López G., Bañares-Hidalgo A., Estrada P. (2011), Xylanase II from Trichoderma reesei QM 9414: conformational and catalytic stability to Chaotropes, Trifluoroethanol, and pH changes. J. Ind. Microbiol. Biotechnol. 38:113-125. DOI:10.1007/S10295-010-0836-0.

Fuente: Universidad Complutense de Madrid
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Algo huele a podrido en Islandia, pero ¿por qué ciertas personas no lo notan?

Lejos de ser un capricho, la preferencia o aversión a ciertos aromas está codificada en el material genético. Un equipo de científicos islandeses descubrió que las personas con una variante en un gen encuentran el olor a pescado putrefacto menos desagradable e intenso que otras.

Alt de la imagen
OPINIÓN
El Nobel de Química 2020 deja una imagen inédita
Carmen Fenoll Comes

Por primera vez en la historia, dos mujeres comparten de manera exclusiva un premio Nobel de ciencias. Emmanuelle Charpentier y Jennifer Doudna han recibido el de Química de 2020 por desarrollar “un método para la edición genética”, CRISPR. Esta es la historia de cómo dos investigadoras se encuentran en un congreso, hablan, se entienden, se ponen a trabajar juntas… y cambian el mundo.