Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Descifrado un mecanismo clave en la hipoxia

Investigadores españoles muestran cómo el sodio controla la señalización hipóxica por la cadena respiratoria mitocondrial. El estudio, publicado en Nature, es clave para avanzar en el conocimiento de la fisiología celular y podría ser usado para futuras terapias en el tratamiento de patologías en las que está involucrada esta deficiencia de oxígeno en la sangre.

José Antonio Enríquez, Pablo Hernansanz-Agustín, Carmen Choya Foces y Antonio Martínez. / CNIC

Científicos del Centro Nacional de Investigaciones Cardiovasculares (CNIC) y del Instituto de Investigación Sanitaria Princesa (IIS Princesa) han descifrado, en gran parte, el mecanismo por el cual se incrementa la producción de especies reactivas de oxígeno (ROS) en las etapas tempranas de la hipoxia –disminución aguda de oxígeno–.

Esta información, publicada en Nature, resulta clave para avanzar en el conocimiento de la fisiología celular y podría ser usada para futuras terapias en el tratamiento de las distintas patologías en las que la hipoxia está involucrada, como un ictus o un paro cardíaco.  

La mayoría de las células eucariotas dependen del consumo de oxígeno que se produce a través del sistema de fosforilación oxidativa mitocondrial (OXPHOS) para producir energía, explica José Antonio Enríquez, investigador del CNIC. “Este sistema produce, a partir del oxígeno, las ROS, unas entidades moleculares consideradas hasta hace poco tiempo sustancias tóxicas del metabolismo”.

Este estudio podría ser usado para futuras terapias en el tratamiento de las distintas patologías en las que la hipoxia está involucrada, como un ictus o un paro cardíaco

Sin embargo, en bajas proporciones, estas especies reactivas actúan como señales capaces de impulsar adaptaciones celulares. De esta forma, asegura Enríquez, “en los primeros minutos, tras disminuir las concentraciones de oxígeno, se generan las ROS que ejercen de señalizadores para iniciar la respuesta de adaptación celular a la deficiencia de oxígeno”.

Un mecanismo fundamental

En 2019, el Premio Nobel de Medicina o Fisiología se otorgó a los investigadores que descubrieron el mecanismo por el que se desarrollan respuestas a la hipoxia sostenida en el tiempo, que está mediado por los factores de respuesta a hipoxia (HIF).

Sin embargo, el organismo tiene otras respuestas más rápidas a la hipoxia, que no dependen de HIF, y en las que participan las ROS. El mecanismo preciso por el cual se incrementa la producción de ROS en etapas tempranas de la hipoxia sigue siendo desconocido, pero gracias a este nuevo trabajo se tiene ahora un mejor conocimiento.

“Hemos determinado que el sodio (Na++) que entra en las mitocondrias actúa como un segundo mensajero regulando la función de la mitocondria –en concreto de la cadena de transporte electrónico mitocondrial-CTM– y causando la producción controlada de ROS”, afirma Pablo Hernansanz-Agustín.

Este mecanismo, a través de la producción de ROS, “es fundamental para la adaptación de la circulación sanguínea pulmonar a situaciones de hipoxia mediante la redistribución del flujo de sangre a zonas menos ventiladas, un fenómeno llamado vasoconstricción pulmonar hipóxica”, señala Antonio Martínez Ruiz.

papel del intercambiador de sodio

La figura ilustra el papel del intercambiador de sodio por calcio mitocondrial (NCLX) en la adaptación temprana a bajas concentraciones de oxígeno o hipoxia mediante la introducción de sodio dentro de la mitocondria. Esto se ve ejemplificado en la vasoconstricción hipoxia de la arteria pulmonar, que conecta el corazón con los pulmones. Ante la bajada de oxigeno se activa el transporte de sodio al interior de las mitocondrias y se inicia la señalización que active la constricción de la arteria. La eliminación del transportador NCLX de la mitocondria impide la correcta respuesta de la arteria a la bajada de oxígeno. / CNIC

Terapia para distintas patologías

Varios aspectos de esta investigación son claves para la fisiología celular, destacan los investigadores. Primero, la capacidad del sodio mitocondrial de regular la fluidez de membranas celulares, un aspecto desconocido hasta el momento y que podría tener grandes implicaciones en la regulación de multitud de procesos celulares.

La capacidad del sodio mitocondrial de regular la fluidez de membranas celulares es un aspecto desconocido hasta el momento y que podría tener grandes implicaciones en multitud de procesos

Segundo, precisa Enríquez, “la relevancia en este proceso de los supercomplejos mitocondriales, generando estructuras sensibles o insensibles al sodio dentro de la cadena de transporte electrónico mitocondrial permitiendo que la acción del sodio no sea tóxica”. Además, añade Martínez, la entrada de sodio en la mitocondria viene precedida de una solubilización del calcio que está depositado dentro de las mitocondrias, en unas estructuras que habían sido descritas hace más de 50 años, pero para las que hasta ahora no se conocía su función fisiológica.

“El trabajo también demuestra que la inhibición del intercambiador mitocondrial de sodio/calcio (NCLX) es suficiente para bloquear esta vía, evitando la adaptación a la hipoxia”, apunta Enríquez. Este hecho, asegura, podría ser usado como terapia para las distintas patologías en las que la hipoxia está involucrada.

 

Referencia:

Nature, 29 de julio de 2020.

La investigación ha contado con la financiación de The International Human Frontier Science Program Organization (HFSP RGP0016/2018).

Fuente:
CNIC
Derechos: Creative Commons.
Artículos relacionados
Alt de la imagen
Describen los mecanismos responsables de la competencia entre genomas mitocondriales

La selección entre ADN mitocondriales depende de cómo estos afectan al metabolismo celular. Así concluye un estudio, publicado en Science Advances, que revela cómo la célula es capaz de reconocer la presencia de diferentes ADN de mitocondria y seleccionar de forma específica aquellos dependiendo de cómo influyen en su estado metabólico.

Alt de la imagen
ENCODE3: Publicado el catálogo más completo para interpretar nuestro genoma

La tercera fase del Proyecto ENCODE ofrece nuevos hallazgos sobre la organización y regulación del genoma humano y de ratón, un logro que ayudará a revelar cómo la variación genética interviene en el desarrollo de enfermedades. Aproximadamente 500 científicos de todo el mundo, también España, han participado en este registro online. Los resultados se han publicado en 14 artículos de la revista Nature.