Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Descubren una nueva partícula en el LHC

Un barión 'beauty' denominado Xi_b*^0 es la última partícula descubierta en el Gran Colisionador de Hadrones (LHC) del Laboratorio Europeo de Física de Partículas (CERN). El hallazgo lo han anunciado científicos del experimento CMS tras analizar las colisiones efectuadas durante el año pasado.

La nueva partícula muestra una señal clara (azul) por encima del nivel de fondo (rojo). Imagen: CMS/CERN.

Investigadores del experimento CMS del Gran Colisionador de Hadrones (LHC) en el CERN han confirmado la existencia de una nueva partícula compuesta. Tras analizar los datos de colisiones a 7 TeV durante 2011 (con una 'luminosidad integrada' de unos 5,3 femtobarn inversos), CMS ha descubierto con significación estadística (más de 5 sigmas) una partícula nueva para la ciencia: un barión del tipo 'beauty' llamado Xi_b*^0.

Los bariones son partículas compuestas por tres quarks, como el protón y el neutrón. Los quarks que componen esta nueva partícula son un quark 'up', un 'strange' y un 'bottom'.

El Xi_b*^0 es inestable y se desintegra inmediatamente, en el mismo punto de interacción de los protones que chocan. Esto quiere decir que no se puede observar directamente, sino que hay que reconstruir la cadena de desintegraciones desde los productos finales.

Según explica Ernest Aguiló, postdoc en la Universidad de Zürich (Suiza) y responsable del análisis, la cadena de desintegraciones del Xi_b*^0 es muy larga, con cuatro estados intermedios. Lo que ha detectado son las trazas que provienen de los productos finales, y de ahí, paso a paso, se logró identificar el estado inicial.

De entre los miles de millones de colisiones registradas por CMS en 2011 se han encontrado solo 18 colisiones en que esta partícula se ha producido. Esto da una idea de la complejidad de los análisis de física realizados con la ingente cantidad de datos obtenida en el gran colisionador.

Aguiló se doctoró en la Universidad de Barcelona trabajando en el experimento LHCb. Posteriormente estuvo de postdoc en DZero, uno de los dos experimentos de Tevatron (el acelerador de partículas estadounidense que dejó de funcionar el año pasado). Allí participó en el descubrimiento de la desintegración electrodébil del quark 'top' y luego pasó a trabajar en la universidad suiza dentro del experimento CMS donde se ha realizado el hallazgo.

El nuevo barión se suma a una lista creciente de descubrimientos en el CERN durante los últimos meses. En diciembre, el experimento ATLAS anunció la observación de un nuevo "estado quarkonium" con un quark ‘beauty’ (belleza) ligado a su antiquark. En noviembre, el experimento LHCb informó de un nuevo efecto en las desintegraciones de partículas que contienen un quark o antiquark ‘charm’ (encantado).

Fuente: CPAN/SINC
Derechos: Creative Commons
Artículos relacionados
Nueva vía para crear ‘cristales de tiempo’

Con la ayuda de un supercomputador, científicos de las universidades de Granada y Tubinga (Alemania) han descubierto una forma de generar cristales de tiempo, un estado de la materia con estructura periódica que se repite en el tiempo. Se trata de un estudio teórico basado en las transiciones de fase que ocurren en extrañas fluctuaciones de sistemas de muchas partículas.

Más de 30 millones de euros para proyectos científicos europeos coordinados desde España

El Consejo Europeo de Investigación (ERC) ha anunciado los proyectos ganadores de las Synergy Grant 2020, unas ayudas destinadas a resolver problemas científicos excepcionalmente complejos. Entre ellos figuran la iniciativa de IMDEA Nanociencia para analizar la interacción de luz y materia en attosegundos, el estudio del CSIC sobre la influencia de los artefactos culturales en la mente humana y un experimento liderado por el DIPC y la Universidad del País Vasco para averiguar la naturaleza de los neutrinos.