No podrás conectarte si excedes diez intentos fallidos.
La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.
Selecciona el tuyo:
Licencia Creative Commons 4.0
No podrás conectarte si excedes diez intentos fallidos.
La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.
Selecciona el tuyo:
El Gran Colisionador de Hadrones del Laboratorio Europeo de Física de Partículas (CERN), en la frontera franco-suiza, empieza este martes a suministrar colisiones de protones con una energía sin precedentes de 13,6 teraelectronvoltios, un evento que se retransmitirá en directo. Se inicia así el Run 3, la tercera serie de toma de datos del gran acelerador.
El histórico descubrimiento del bosón de Higgs en el Gran Colisionador de Hadrones del CERN hace exactamente diez años y los progresos realizados desde entonces han permitido a la comunidad científica dar enormes pasos en nuestra comprensión del universo.
La colaboración científica ALICE del Gran Colisionador de Hadrones del CERN ha conseguido observar por primera vez el efecto deadcone, una característica fundamental en la teoría de la fuerza nuclear fuerte. Esta une dos tipos de partículas, los quarks y los gluones, para formar protones, neutrones y, en última instancia, todos los núcleos atómicos.
El mayor y más potente acelerador de partículas del mundo, el LHC, ha vuelto a ponerse en marcha este viernes tras más de tres años de labores de mantenimiento y actualización. En julio comenzará a recoger datos a una energía récord, sometiendo al modelo estándar de la física a las pruebas más estrictas realizadas hasta la fecha.
Investigadores del Instituto de Física Corpuscular (CSIC-Universidad de Valencia) han registrado la masa del quark bottom con una precisión sin precedentes a partir de sus interacciones con el bosón de Higgs. Además han comprobado que este quark es más ligero a energías más altas, confirmando que las masas de las partículas elementales cambian en función de la energía a la que se observan.
Varias teorías predicen la existencia de una partícula elemental con un solo polo magnético, pero todavía no se ha encontrado ninguna. Ahora los científicos del experimento MoEDAL del Gran Colisionador de Hadrones del CERN muestran el camino para encontrarla con ayuda de los campos magnéticos más fuertes del universo.
A diferencia del higgs, descubierto en 2012 en el gran colisionador de hadrones del CERN, físico teóricos de las universidades de Granada y Johannes Gutenberg en Alemania proponen la existencia de una partícula tan pesada que sería imposible de producir directamente en ese experimento. Podría ser una ventana para desentrañar los misterios de la materia oscura.
Las colaboraciones científicas CMS y ATLAS del Laboratorio Europeo de Física de Partículas han obtenido nuevos resultados que muestran cómo el bosón de Higgs se desintegra en dos muones, unas partículas similares al electrón pero más pesadas. Se calcula que solo uno de cada 5.000 higgs producidos en el gran acelerador LHC experimenta este fenómeno.
Nuevas investigaciones sobre el bosón de Higgs, explorar la frontera de las altas energías, finalizar el LHC de Alta Luminosidad y promover un colisionador positrón-electrón que actúe como ‘factoría de higgs’. Estas son algunas claves de la estrategia presentada por el Consejo del CERN para guiar la física de partículas en Europa en los próximos años.