Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

La antimateria también se ve afectada por la gravedad

Científicos de la colaboración ALPHA del CERN han presentado la primera evidencia directa de cómo los átomos de antimateria interactúan con la gravedad. El estudio, que publica Nature Communications, se ha centrado en medir la masa gravitacional del antihidrógeno.

Experimento ALPHA. / CERN

En 2010 los miembros del experimento ALPHA del CERN ya consiguieron atrapar antihidrógeno, el átomo de antimateria neutra más simple. Ahora han medido por primera vez su masa gravitacional –fuerza de atracción en un campo gravitatorio– y ver su proporción respecto a su masa inercial –resistencia al cambio de velocidad–.

Los resultados revelan que si un átomo de antihidrógeno cae hacia abajo, su masa gravitacional es no más de 110 veces mayor que su masa inercial. Pero si cayera hacia arriba, su masa gravitacional es a lo sumo 65 veces mayor. Los datos permiten establecer estos límites.

En cualquier caso lo que demuestra el estudio es que se puede medir la gravedad de la antimateria. La técnica para hacerlo se publica ahora en la revista Nature Communications , y el equipo confía en que vaya adquiriendo cada vez más precisión.

“Uno de los grandes interrogantes sobre la antimateria neutra es cómo se comporta cuando interactúa gravitacionalmente con la materia”, explica a SINC Marcelo Baquero-Ruiz, de la Universidad de California en Berkeley (EE.UU.) y coautor del trabajo.

“Hay muchos argumentos que sugieren que ambas se debería atraer y comportarse de la misma manera –prosigue–. Sin embargo, nunca nadie ha tenido la posibilidad de poner a prueba experimentalmente esta afirmación hasta ahora. Pero quedan preguntas sin resolver: ¿Se caerá la antimateria hacia arriba o hacia abajo? ¿O tal vez es atraída hacia la materia pero con una aceleración diferente?”

Estas cuestiones siguen intrigando a los físicos, añade Joel Fajans, otro miembro de la colaboración en la Universidad de California-Berkeley, ya que "en el caso improbable de que la antimateria se cayera hacia arriba, tendríamos que revisar radicalmente nuestra visión de la física y repensar cómo funciona el universo".

¿La antimateria se cae hacia arriba o abajo?

Pero los argumentos teóricos actuales predicen que los átomos de hidrógeno y antihidrógeno tienen la misma masa y deben interactuar ante la gravedad de la misma manera. Si se libera un átomo, debería experimentar una fuerza hacia abajo tanto si está hecho de materia o antimateria.

"El aparato ALPHA puede atrapar átomos de antihidrógeno y luego liberararlos a propósito", aclara Jeffrey Hangst, el portavoz de ALPHA, para explicar la técnica que ha seguido. "Utilizamos nuestro detector de aniquilación sensible a la posición para ver si podíamos observar la influencia de la gravedad en esos átomos liberados".

El equipo ha analizado con caracter retroactivo cómo los átomos de antihidrógeno se movieron cuando se liberaban, lo que les ha permitido establecer los límites a los efectos gravitacionales, pero de momento se trata de un primer paso.

Los científicos confían en que cuando se reanude el experimento en 2014 con una trampa de antimateria actualizada, bautizada com ALPHA-2, se logren más avances. Además, el CERN prepara otros experimentos, como AEgIS y GBAR, para seguir midiendo cómo la gravedad afecta al antihidrógeno.

Referencia bibliográfica:

The ALPHA Collaboration y A.E. Charman. “Description and first application of a new technique to measure the gravitational mass of antihydrogen”. Nature Communications, 30 de abril de 2013. DOI: 10.1038/ncomms2787.

Fuente: CERN
Derechos: Creative Commons
Artículos relacionados
La sonda china Chang'e 5 aterriza en la Luna para traer muestras

Este martes ha alunizado con éxito la sonda Chang'e 5, con la que China pretende convertirse en el tercer país que recoge muestras lunares para estudiarlas luego en la Tierra, tras conseguirlo antes EE UU y Rusia. El viaje de regreso con unos 2 kilos de material está previsto para este mismo mes.

Fuerzas de marea para eliminar materia oscura de las galaxias

La escasez de materia oscura en la galaxia NGC1052-DF4 desconcertaba a los astrónomos, pero ahora investigadores del Instituto de Astrofísica de Canarias y otros centros internacionales han dado con el mecanismo que lo explica: mareas provocadas por la interacción gravitatoria con una galaxia cercana.