Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

La destrucción de una estrella por un agujero negro dispara un neutrino cósmico

Un equipo de astrofísicos ha detectado un neutrino de alta energía procedente del mismo lugar donde un agujero negro ‘devora’ una estrella. Para que se produzcan estas esquivas partículas se necesitan rayos cósmicos acelerados, así que la fuente podría ser la misma.

Disco de acreción alrededor de un agujero negro ‘engullendo’ material de una estrella y emitiendo chorros. La masa extrema del agujero negro dobla el espacio-tiempo, lo que permite ver el lado más alejado del disco de acreción como una imagen por encima y debajo del agujero. Procedente de un escenario como este se ha detectado un neutrino de alta energía. / DESY, Science Communication Lab

En 2018 el observatorio IceCube de la Antártida, en colaboración con telescopios de todo el mundo, anunció un descubrimiento histórico: la primera evidencia de una fuente de neutrinos y rayos cósmicos de alta energía: el blazar TXS 0506 + 056, una gigantesca galaxia con un agujero negro y un chorro de partículas apuntando directamente hacia la Tierra.

Se ha detectado un neutrino de alta energía procedente de la misma fuente (AT2019dsg) donde hay un agujero negro ‘devorando’ una estrella

Ahora se ha descubierto una segunda fuente de este tipo: AT2019dsg, en este caso constituida por una agujero negro ‘engullendo’ una estrella que se ha aproximado demasiado. Los astrofísicos denominan a este fenómeno evento de disrupción de marea (TDE, por sus siglas en inglés), donde la estrella se ‘espaguetiza’ y es succionada en gran parte por la potente gravedad del agujero.

Investigadores de más de 30 instituciones, liderados por Robert Stein desde el Deutsches Elektronen SYnchrotron (DESY) en Alemania, han encontrado un neutrino de alta energía en la misma dirección que AT2019dsg, lo que a su vez relacionan con las partículas más energéticas del universo: los rayos cósmicos de ultra alta energía. El hallazgo se publica esta semana en la revista Nature Astronomy.

“Hemos modelizado los datos electromagnéticos de este TDE, AT2019dsg, y descubierto que tiene el entorno adecuado para acelerar partículas y producir neutrinos”, subraya Stein a SINC, y explica: “Los rayos cósmicos son partículas cargadas, producidas por aceleradores de partículas cósmicas, y los neutrinos se generan cuando estos rayos cósmicos acelerados interactúan con los fotones o la luz. No se pueden producir neutrinos sin rayos cósmicos. Así que si los TDE producen neutrinos de alta energía, también deben producir rayos cósmicos”.

No se pueden producir neutrinos de alta energía sin rayos cósmicos acelerados, así que si eventos de disrupción de marea (TDE) como este producen neutrinos, también deben generar rayos cósmicos

Robert Stein (DESY)

El investigador señala que blazares como el descubierto en 2018, no pueden producir más del 30 % de los neutrinos de alta energía detectados por IceCube, por lo que la mayoría tienen que venir de otros lugares: “La pregunta es de dónde. De momento AT2019dsg es la segunda fuente de neutrinos de alta energía y proporciona la primera prueba de que las TDE también producen algunos neutrinos”.

La señal de esta nueva fuente fue descubierta con el telescopio óptico ZTF (Zwicky Transient Facility) del Observatorio Palomar (EE UU) en el marco de un programa de seguimiento de neutrinos, pero luego otros 13 instrumentos la han estudiado en diferentes longitudes de onda, incluyendo IceCube desde la Antártida, el telescopio Liverpool desde Tenerife y, desde el espacio, los observatorios XMM-Newton de la ESA y Swift y Fermi-LAT de la NASA.

“Ahora seguiremos realizando más observaciones e intentando encontrar más fuentes de neutrinos de alta energía, para determinar si los TDE producen neutrinos de forma general, o si AT2019dsg es un evento inusual”, adelanta a SINC el coautor César Rojas Bravo de la Universidad de California en Santa Cruz (EE UU).

Otra posible fuente de rayos cósmicos

Recientemente miembros de la colaboración HAWC (High Altitude Water Cherenkov), un observatorio de rayos gamma situado en México, también han encontrado otra fuente galáctica candidata a producir rayos cósmicos de ultra alta energía.

Desde el observatorio de rayos gamma HAWC en México también se ha detectado una fuente galáctica candidata a producir rayos cósmicos de muy alta energía

El estudio, publicado en The Astrophysical Journal Letters, muestra la detección de fotones de muy alta energía procedentes de la fuente HAWC J1825-134, cuyo espectro energético alcanza energías de al menos 200 teraelectronvoltios (TeV).

Según los autores, entre los que figura Francisco Salesa Greus del Instituto de Física Corpuscular (IFIC, CSIC-Universidad de Valencia), esa emisión debería haber sido creada entonces por rayos cósmicos de aún más alta energía, del orden del petaelectronvoltio (PeV), mostrando así un posible origen para estos. 

Observatorio de rayos gamma HAWC en México. / HAWC

Los rayos gamma observados por HAWC serían el resultado de la interacción de esos rayos cósmicos de más alta energía con moléculas de una zona de alta densidad de materia, una nube molecular, según los investigadores.

“Los resultados de las observaciones de HAWC J1825-134 hacen de esta fuente una clara candidata a emitir neutrinos de alta energía”, destaca Salesa, que al igual que el resto de los autores confía en que telescopios como IceCube o KM3NeT, actualmente en construcción en el fondo del Mediterráneo pero con algunas líneas ya operativas, puedan confirmar el hallazgo. 

Referencias:

Robert Stein et al. “A tidal disruption event coincident with a high-energy neutrino”. Nature Astronomy, 2021.

A. Albert et al. “Evidence of 200 TeV Photons from HAWC J1825-134”. ApJL, 2021.

Fuente:
SINC
Derechos: Creative Commons.
Artículos relacionados
Los restos de una supernova de 1181 apuntan a que se originó por la fusión de dos estrellas

En el siglo XII astrónomos chinos y japoneses observaron una explosión estelar en el cielo que se mantuvo durante seis meses. Ahora investigadores de la Universidad de Hong Kong, el Instituto de Astrofísica de Andalucía y otros centros han localizado su remanente y sugieren que fue fruto de la interacción de un sistema binario de estrellas.

La meseta del Tíbet se une al club de los mejores lugares de la Tierra para la observación astronómica

Astrónomos de China han comprobado que las montañas tibetanas que rodean Lenghu, una ciudad al oeste del país, presenta unas condiciones ideales para instalar telescopios de última generación. La calidad de su cielo es comparable a la de otros lugares de referencia como las cumbres de Hawái (EE UU), el desierto de Atacama (Chile) o la isla de La Palma en España.