Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Leyes de la física para explicar cómo funciona el cerebro humano

¿Es posible explicar los mecanismos de funcionamiento del cerebro humano empleando únicamente las leyes de la física? Científicos de la Universidad de Granada lo han demostrado por primera vez en un artículo publicado en Scientific Reports estudiando en detalle las neuronas como si fueran ecuaciones físicas en derivadas parciales.

Arquitectura de las fibras de materia blanca que informa acerca de la relación entre regiones cerebrales / Proyecto Human Connectome

Los investigadores Joaquín Torres y Joaquín Marro, del Instituto Carlos I de la Universidad de Granada (UGR), han realizado un original planteamiento: han estudiado detalladamente las neuronas cerebrales como si fueran ecuaciones físicas en derivadas parciales, que se relacionan según un entramado de interacciones, denominadas sinápticas.

El modelo está basado en una serie de redes de neuronas matemáticas que imitan a esas redes naturales de conexiones cerebrales que dan soporte a nuestra mente

Su trabajo, publicado en la revista Scientific Reports, ha permitido establecer un modelo basado en una serie de redes de neuronas matemáticas que imitan a esas redes naturales de conexiones cerebrales que dan soporte a nuestra mente.

Los investigadores detectaron y caracterizaron con detalle en su modelo hasta siete fases o comportamientos de la mente humana cualitativamente distintos, a los que han asignado un color diferente.

Estos cambios tienen lugar al variar un parámetro D, que describe el nivel de “ruido”, es decir, la suma de señales aparentemente aleatorias que provienen de otras partes del sistema nervioso o del exterior. Estas fases incluyen los familiares estados mentales de reposo completo o discontinuo, sincronizaciones neuronales totales, parciales o cambiantes con el tiempo, recuperación de memorias, etc., y situaciones muy dinámicas que recuerdan nuestros estados de vigilia y atención.

Además, al perturbar el sistema con una señal débil muestra con claridad seis picos bien definidos que señalan las transiciones entre las fases que se observan.

Cambios de fase

Según Torres y Marro, “los físicos sabemos describir con fidelidad matemática situaciones singulares que genéricamente denominan cambios de fase". Ponen de ejemplo el caso del agua cuando se solidifica, que adopta una estructura tan diferente de la de partida que ya no se habla de agua. Cuando se hace vapor se puede extenderse sin límite por todo el espacio aunque apenas haya cambiado de volumen al ir calentándola hasta llegar a esa situación.

En la naturaleza reinan las irregularidades espaciales y temporales

La fenomenología asociada con cambios de fase es, en la práctica, aún más fascinante de lo que indican estas pautas, pues en lugar del equilibrio ideal que describe la termodinámica, en la naturaleza reinan las irregularidades espaciales y temporales.

“Es el caso de cerebros evolucionados, como se ha hecho evidente en estudios recientes usando resonancias magnéticas, tomografía por emisión de positrones, encefalografías y delicadas sondas”, explican los autores de este trabajo.

Esta conducta sugiere preparar sencillos experimentos psicofísicos. “Se trata de estimular el cerebro con una señal débil –como por ejemplo, suaves soplos de aire sobre los ojos– y monitorizar cómo se propaga por nuestra red neuronal mientras compite con otro ruido, como un sonido cuya intensidad puede ir modificándose”, apuntan.

Se supone que el estímulo es procesado por las neuronas y que éstas reaccionan provocando sincronizados parpadeos como respuesta y defensa. Sin embargo, las neuronas también están siendo perturbadas por el ruido D, de modo que pueden no ser capaces de sincronizarse adecuadamente con los soplos.

Propiedades robustas

Los investigadores de la UGR han demostrado también que las propiedades emergentes del modelo son robustas, es decir, poco sensibles a posibles modificaciones en los detalles, particularmente, los referidos a la forma topológica de la malla de interacciones.

Tras comprobar la versatilidad y la utilidad de su modelo, los científicos pretenden ahora adaptarlo para comprender cómo cambian esos fenómenos emergentes relacionados con funciones mentales, al considerar distintas mallas de interacciones según los datos que están siendo disponibles para especies animales distintas. "Quizá este camino nos lleve a averiguar qué nos hace a los humanos diferentes en lo que al cerebro se refiere”, concluyen los investigadores.

Referencia bibliográfica:

Joaquín J. Torres & J. Marro "Brain Performance versus Phase Transitions" Scientific Reports | 5:12216 | DOI: 10.1038/srep12216

Fuente: UGRdivulga
Derechos: Creative Commons

Solo para medios:

Si eres periodista y quieres el contacto con los investigadores, regístrate en SINC como periodista.

Artículos relacionados
Grafeno para evitar el calentamiento de los dispositivos electrónicos

Investigadores de los institutos ICN2 e ICFO han logrado observar y controlar la difusión ultrarrápida del calor en el grafeno a temperatura ambiente. El avance se podría aplicar en la refrigeración de dispositivos electrónicos a escala nanométrica.

Fabricado el primer supersólido 2D

Los supersólidos son materiales exóticos constituidos de partículas ordenadas como en un sólido, pero capaces de fluir sin fricción. Ya se habían conseguido producir en una dimensión, pero ahora, por primera vez, se ha generado un gas cuántico supersólido bidimensional con átomos ultrafríos y muy magnetizados de disprosio, una tierra rara.