Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Magnónica: una tecnología prometedora para transmitir y procesar información

Investigadores del Departamento de Física de la Materia Condensada de la Universidad Autónoma de Madrid están a la vanguardia de este nuevo campo de investigación, el cual promete ofrecer una mayor flexibilidad de procesamiento y transmisión de información en los microprocesadores del futuro.

Discos magnéticos en estado de vórtice, acoplados dinámicamente

La magnónica está basada en la nanoestructuración de materiales magnéticos y permite transmitir, procesar y detectar la información usando magnones (ondas de espin de electrón) de manera controlada.

Hasta el momento los experimentos en este reciente campo de investigación se han concentrado en estudiar la propagación de ondas a través del giro de momentos magnéticos locales en una película continua o en una película con rendijas situadas periódicamente. De forma distinta y novedosa, el grupo MAGNETRANS de la Universidad Autónoma de Madrid (UAM) decidió usar los nanoimanes en estado de vórtice magnético para trasmitir y procesar la información.

Este tipo de soporte magnético (discos magnéticos en estado de vórtice y acoplados dinámicamente entre sí, como muestra el esquema) es esencialmente nuevo, y podría ofrecer no sólo formas inéditas de transmitir información en el rango de frecuencias de hasta decenas de gigahercios (decenas de miles de millones de veces en un segundo), sino también filtrar la información de manera precisa usando movimientos rotacionales de los vórtices y, lo que es muy importante, sin necesidad de crear campos magnéticos internos de elevada intensidad.

Esta investigación, que es tanto de carácter fundamental como aplicado, y que se publicó recientemente en Applied Physics Letters, fue realizada por el becario de investigación de la UAM Ahmad Awad, bajo la dirección del profesor Farkhad Aliev, en una estrecha colaboración con científicos de de la Universidad del País Vasco y la Universidad de Universidad de Oporto.

La observación de la variación de excitaciones de magnones en función de la distancia entre los nanoimanes fue llevada a cabo en un novedoso sistema experimental que permite el estudio de excitaciones dinámicas de nanoestructuras magnéticas y superconductoras en un amplísimo rango de temperaturas (desde temperatura ambiente hasta -272º), y en campos magnéticos de hasta 9 Tesla (lo que equivale a casi un millón de veces el campo magnético terrestre).

Tecnologías emergentes

Los enormes progresos que se han producido en nanofabricacion durante la última década han permitido el desarrollo de nuevos materiales y tecnologías de procesamiento y de transmisión de información relacionadas con estos materiales. Entre los diversos nuevos desarrollos se pueden mencionar la fotónica (manejo de luz en materiales ópticos nanoestructurados), la plasmónica (utilización de excitaciones electrónicas superficiales en materiales metálicos) o la espintrónica (manejo del espín además de la carga del electrón en dispositivos electrónicos).

En muchos sentidos las nanoestructuras magnéticas, de las que se ocupa la magnónica, tienen una mayor versatilidad de transmisión de información en comparación con los sistemas ópticos o los metales no magnéticos, ya que la aplicación de un campo magnético o de una corriente externa permite cambiar fácilmente los parámetros del dispositivo.

-----------------------------------------------------
Referencia bibliográfica:

A. A. Awad, G. R. Aranda, D. Dieleman, K. Y. Guslienko, G. N. Kakazei, B. A. Ivanov, and F. G. Aliev, Spin excitation frequencies in magnetostatically coupled arrays of vortex state circular Permalloy dots, en: Appl. Phys. Lett. 97, 132501 (2010); doi:10.1063/1.3495774.

En resumen, la investigación demuestra la posibilidad de usar excitaciones de los vórtices magnéticos para manejar información, abriendo así nuevas alternativas para el desarrollo y la implementación de estos sistemas en la industria de almacenamiento de información.

Fuente: Universidad Autónoma de Madrid (UCCUAM)
Derechos: Creative Commons
Artículos relacionados
La primera ‘película’ de una medición cuántica, un avance de la física con ciencia española

El hecho de medir un sistema cuántico suele forzarlo hacia un estado clásico, pero científicos de la Universidad de Sevilla y otros centros europeos han logrado tomar instantáneas durante una millonésima de segundo para ‘filmar’ este proceso sin destruir la información cuántica. El avance, que podría ayudar a corregir errores en los ordenadores cuánticos, figura entre los diez mejores de 2020 según la revista Physics World.

Estas células inmunitarias excavan túneles en los tejidos

Los linfocitos T citotóxicos, encargados de eliminar células tumorales o infectadas por patógenos, son capaces de crear canales a través de la matriz extracelular, lo que facilita la llegada de refuerzos. Investigadores alemanes han visualizado este proceso en 3D usando colágeno sintético, un resultado que puede aportar nuevas ideas en los tratamientos contra el cáncer.