Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Nueva medida de la constante de gravitación universal

Hasta ahora, el valor de la constante de gravitación universal, que determina la intensidad de la atracción gravitatoria entre los cuerpos, era 6,67384(80) x 10-11 m3 kg-1 s-2, pero científicos italianos la han establecido en 6,67191(99) x 10-11 m3 kg-1 s-2. Para obtener el nuevo valor han utilizado átomos enfriados con láser y técnicas cuánticas de medición.

Comparación del resultado actual para G (en azul) respecto a otros anteriores. / Guglielmo Tino et al.

Los estudiantes de física saben que el valor de la letra G que se usa en la ley de la gravitación universal de Newton, cuya fórmula es F=G m1m2/r2, se ajusta a 6,67384(80) x 10-11 m3 kg-1 s-2 (las unidades también pueden ser N m2 kg-2). Sin embargo, un equipo de investigadores dirigidos desde la Universidad de Florencia (Italia) ha obtenido una medida ligeramente diferente.

Según publican esta semana en la revista Nature, la cifra es 6,67191(99) x 10-11 m3 kg-1 s-2, un resultado “muy importante” para avanzar hacia el establecimiento definitivo de un valor preciso absoluto de esta constante, un logro todavía pendiente.

Para la medición se han utilizado cilindros de tungsteno y nubes frías de átomos de rubidio

Hasta ahora, se han hecho alrededor de 300 intentos para determinar G, la mayor parte de ellos mediante métodos de torsión similares a la balanza que utilizó Henry Cavendish en 1798, cuando calculó el valor mediante un experimento con una vara y dos esferas de plomo en sus extremos.

En las últimas décadas, aunque se ha ido incrementando la precisión de las mediciones, no se ha podido converger en un valor consistente y los resultados son discrepantes.

Esto sugiere la presencia de errores sistemáticos que todavía no se han identificado en los experimentos, aunque se piensa que están relacionados con las medidas de la atracción gravitacional entre masas macroscópicas.

En el nuevo trabajo, el equipo también ha utilizado un juego de masas macroscópicas como fuente del campo gravitatorio: cilindros de tungsteno de alrededor de 500 kilogramos. Sin embargo, el sensor de gravedad se compone de dos nubes de átomos de rubidio enfriados con láser, que suben y bajan en diferentes trayectorias según la gravedad conjunta de la Tierra y los cilindros de tungsteno.

Este cuidadoso diseño experimental, junto a las medidas cuánticas y la consideración de las fuentes de error, ha permitido obtener G con una precisión de aproximadamente el 0,015%, un poco menos que con otras mediciones y ligeramente desviado de lo que recomienda el denominado Committee on Data for Science and Technology (CODATA). Aun así lo que destacan los investigadores es el potencial de mejora que tiene la nueva técnica para llegar al valor definitivo.

Referencia bibliográfica:

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. “Precision measurement of the Newtonian gravitational constant using cold atoms”. Nature, 18 de junio de 2014. Doi:10.1038/nature13433.

Fuente: SINC
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Un nuevo estudio cuestiona que las microgotas de aerosol sean portadoras eficientes del coronavirus

En medio del debate sobre la importancia de la transmisión aérea del SARS-CoV2, investigadores de la Universidad de Ámsterdam han medido con láser y modelizado la dinámica de las gotitas respiratorias más pequeñas cuando son exhaladas. Sus resultados indican que el virus no se propaga muy bien a través de ellas: son demasiado pequeñas como para llevar muchas partículas víricas. Pese a ello, los investigadores están de acuerdo en que “los aerosoles son importantes en la transmisión del coronavirus”. Su pregunta es “si es la forma más importante”.

Alt de la imagen
Nobel de Física para tres investigadores que abrieron nuevos caminos hacia los agujeros negros

La Real Academia Sueca de las Ciencias ha otorgado el Premio Nobel de Física 2020 al británico Roger Penrose por descubrir que la formación de un agujero negro es una predicción sólida de la teoría general de la relatividad y al alemán Reinhard Genzel y la estadounidense Andrea Ghez, cuarta mujer en obtener este galardón, por encontrar un objeto supermasivo de este tipo en el centro de nuestra galaxia.