Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Agencia Sinc
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Por qué algunos mamíferos tienen rayas de diferentes colores en la piel

Un equipo internacional de científicos con participación española ha descubierto los mecanismos genéticos y moleculares responsables de los patrones de rayas de diferentes colores en la piel de algunos mamíferos, tomando como modelo el ratón rayado africano. Los resultados demuestran que las bandas blancas son consecuencia de la inhibición de un gen.

El ratón rayado africano (Rhabdomys pumilio) se caracteriza por tener en su dorso dos bandas blancas longitudinales delimitadas a cada lado por otras oscuras. / Elaine Kruer

El ratón rayado africano (Rhabdomys pumilio) es una especie de roedor que se caracteriza por tener en su dorso dos bandas blancas longitudinales delimitadas a cada lado por otras oscuras. Las bandas oscuras se producen por pigmentación generada en los melanocitos (célula dendrítica cuya principal función es la producción de melanina).

Las bandas blancas son consecuencia de la inhibición de un gen llamado Mitf que es esencial para la función de los melanocitos

Hasta ahora, se desconocía cómo se formaban estas rayas en los mamíferos. Un nuevo estudio, publicado esta semana en Nature y que ha contado con participación española, ha descubierto los mecanismos genéticos y moleculares que producen los patrones de rayas de diferentes colores en la piel de los mamíferos, basándose en el ratón rayado africano.

"Los patrones de colores de los mamíferos son una de las características más reconocibles que podemos encontrar en la naturaleza. Además, pueden tener un gran impacto sobre su salud. Sin embargo, hasta este momento sabíamos poco sobre los mecanismos responsable de la formación y evolución de estos patrones", explica el Mario Vallejo, investigador, junto a Mercedes Mirasierra, del Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) y del Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM).

El hallazgo fundamental de esta investigación, liderada por Hopi E. Hoekstra, de la Universidad de Harvard, es que las bandas blancas son consecuencia de la inhibición de un gen llamado Mitf que es esencial para la función de los melanocitos, y esa inhibición se lleva a cabo por un factor de transcripción (una proteína reguladora) llamado Alx3.

El papel de Alx3 en la diabetes

El grupo liderado por Vallejo investiga desde hace varios años el papel que puede tener este mismo factor de transcripción Alx3 en la diabetes. En un artículo publicado por este mismo equipo a principios del 2016 en la revista Diabetologia, se describía el mecanismo mediante el cual Alx3 reprime la expresión del gen de glucagón en los islotes pancreáticos.

El grupo investiga desde hace varios años el papel que puede tener este mismo factor de transcripción Alx3 en la diabetes

La manera en la que ocurre la represión de la actividad de Mitf por parte de Alx3 que explica el artículo de Nature puede ser similar a la que el mismo factor de transcripción utiliza en el páncreas para reprimir la expresión del gen de glucagón.

En el trabajo de Diabetologia, se describe que los niveles de Alx3 en las células de los islotes que producen glucagón (las células alfa) aumentan cuando suben los niveles de glucosa en sangre. Como consecuencia de ello, Alx3 interfiere con un factor de transcripción llamado Pax6 que es crítico para que la actividad del gen de glucagón se mantenga elevada, y por tanto la actividad de este gen en presencia de Alx3 disminuye. Como consecuencia de ello los niveles de glucagón generados en el páncreas también disminuyen.

En personas sanas, cuando los niveles de glucosa en sangre son bajos, el glucagón se libera a la sangre y actúa sobre el hígado, donde se almacenan los depósitos de reserva de glucosa. De esta manera se libera glucosa para suplir las necesidades metabólicas de los diferentes tejidos del organismo.

El problema está en que en algunos enfermos diabéticos, a pesar de tener niveles de glucosa anormalmente altos, las células alfa siguen fabricando y secretando glucagón, que mediante su actividad liberadora de glucosa desde el hígado no hace más que agravar el problema. Los científicos proponen que Alx3 podría ser una pieza clave de los mecanismos reguladores que pueden verse alterados en algunos enfermos diabéticos.

Referencias bibliográficas:

Ricardo Mallarino, Corneliu Henegar, Mercedes Mirasierra, Marie Manceau, Carsten Schradin, Mario Vallejo, Slobodan Beronja, Gregory S. Barsh & Hopi E. Hoekstra. “Developmental mechanisms of stripe patterns in rodentsNature. DOI:10.1038/nature20109

Mercedes Mirasierra y Mario Vallejo. “Glucose-dependent downregulation of glucagon gene expression mediated by selective interactions between ALX3 and PAX6 in mouse alpha cells” Diabetologia. DOI: 10.1007/s00125-015-3849-4

Fuente: SINC
Derechos: Creative Commons
Artículos relacionados