Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Revelan la retroalimentación existente entre dos importantes genes

Un equipo internacional de investigadores han descrito la retroalimentación existente entre los genes TP73 y TRIM32, asociados a varias enfermedades como las patologías neurodegenerativas o el cáncer. Sus hallazgos se publican en la revista Cell Death and Disease.

La expresión nuclear del factor de transcripción TAp73 (verde) correlaciona (flechas amarillas) con un incremento en la expresión de TRIM32 (rojo) colocalizando ambas proteínas en el núcleo celular (amarillo). / Carmen Marín.

El grupo de Diferenciación Celular del Instituto de Biomedicina de la Universidad de León (Ibiomed), junto con investigadores del Instituto de Biología Celular de Münster (Alemania) y de la Universidad de Toronto (Canadá), acaba de publicar en la revista Cell Death and Disease la retroalimentación existente entre dos genes (TP73 y TRIM32) asociados a varias enfermedades, como las neurodegenerativas o el cáncer.

Como explica Carmen Marín Vieira, responsable del grupo del Ibiomed, los mamíferos “tenemos la capacidad de regenerar nuestras neuronas incluso cuando somos adultos”, aunque esa capacidad de neurogénesis “se va perdiendo con la edad”.

“Para mantener esa capacidad de neurogénesis el cuerpo debe tener una población de células, las denominadas células troncales neurales o células madre troncales que, ante un estímulo determinado o cuando existe un daño o pérdida neuronal, se activan y diferencian para dar lugar a nuevas neuronas”, sostiene.

En este proceso de neurogénesis las proteínas TP73 y TRIM32 desempeñan un importante papel, ya que intervienen “en el mantenimiento de esa población de células madre troncales y en la diferenciación hacia neuronas”. El grupo de investigadores del Ibiomed investiga desde hace varios años estas proteínas, cuya desregulación “está asociada sobre todo a enfermedades neurodegenerativas como el alzhéimer o el párkinson”.

Defectos en la regulación

“Hemos realizado un trabajo de tipo bioquímico y genético en el que se observa cómo se regulan y retroalimentan estas dos proteínas, cómo interaccionan entre ellas para mantener esa población de células troncales y cómo se activan cuando esas células se van a diferenciar a neuronas”, detalla Marín.

Cuando estos dos genes están alterados se producen defectos en la regulación y, por tanto, la neurogénesis no se realiza bien

Respecto a este proceso, la doctora señala que TP73 es un factor de transcripción que se une al promotor del segundo gen para activar su expresión y producir la proteína TRIM32. Además de ser necesaria para la inducción de la diferenciación neuronal, tiene como función la degradación de otras proteínas.

Así, una vez que TRIM32 se ha expresado, este a su vez se une a TP73 e induce su degradación. “Es decir, el sistema se retroalimenta. Cuando llega una señal, TP73 activa la expresión de TRIM32 y cuando llega a determinada expresión, apaga el sistema degradando a TP73”, precisa la investigadora.

La importancia del trabajo radica en que cuando estos dos genes están alterados se producen defectos en la regulación y, por tanto, la neurogénesis no se realiza bien.

Por tanto, TP73 y TRIM32 pueden ser posibles dianas terapéuticas. “Regular la expresión de estos genes y por tanto mantener una determinada cantidad de estas proteínas puede ser un enfoque terapéutico”, señala Marín, quien adelanta que la idea es elaborar una propuesta de investigación conjunta en Europa para seguir avanzando en esta línea y comprobar si existe esta interacción funcional en otros procesos importantes como el mantenimiento de las células madre.

Colaboración internacional

El Grupo de Diferenciación Celular del Instituto de Biomedicina de la Universidad de León (Ibiomed) estudia modelos de diferenciación y diseña sistemas que permiten obtener dianas terapéuticas para distintas enfermedades. En este marco, en un estudio previo sobre la función de TP73 en el cerebro, apuntaron cómo la falta de TP73 afectaba al nicho neurogénico y cómo esa función se reflejaba en un defecto en la diferenciación prematura de estas células troncales. En la literatura observaron que esta otra proteína, TRIM32, podía tener un efecto importante en la diferenciación neuronal y contactaron con el autor de la investigación y se inició la colaboración.

Respecto al grupo canadiense, el contacto surge a raíz de una tesis doctoral desarrollada en el Ibiomed. El grupo de la Universidad de Toronto trabajaba en TRIM32 y TP73 desde otro ángulo, en concreto en su relación con el cáncer, donde la desregulación de estas proteínas también cumple una función importante.

Referencia bibliográfica

Gonzalez-Cano, L., Hillje, A. L., Fuertes-Alvarez, S., Marques, M. M., Blanch, A., Ian, R. W., ... & Marín, M. C. (2013). Regulatory feedback loop between TP73 and TRIM32. Cell death & disease, 4(7), e704.

Fuente: DiCYT
Derechos: Creative Commons
Artículos relacionados
Desarrollado un organoide que reproduce el corazón embrionario

Científicos de Suiza han utilizado organoides –órganos en miniatura cultivados en el laboratorio– para reproducir las primeras etapas del desarrollo del corazón. Este modelo pionero, publicado en Cell Stem Cell, podría usarse en el futuro para detectar los factores que intervienen en las enfermedades cardíacas congénitas.

Cómo se produce el síndrome congénito de microcefalia que genera el zika

Un enzima del virus del Zika interacciona con varias proteínas localizadas en la base del cilio primario –presente en la membrana plasmática de la mayoría de las células de mamífero–, lo que causa la generación prematura de neuronas. Según un nuevo estudio publicado en Cell Stem Cell por investigadores españoles, esto provoca la parada del crecimiento del cerebro durante el desarrollo fetal.