CIENCIAS SOCIALES: Económicas

Un modelo de redes neuronales predice si un banco puede quebrar

English
  • Facebook
  • Delicious
  • Meneame
  • Arroba

El mecanismo de aprendizaje de las neuronas ha inspirado a investigadores de la Universidad de Valladolid para crear unos algoritmos que anticipan si un banco entrará en bancarrota. El modelo acertó el 96% de los bancos que quebraron en EE UU en 2013 tras analizar sus indicadores financieros de la década anterior, marcada por la crisis. Los más perjudicados fueron los que acumularon préstamos al sector de la construcción y tuvieron un crecimiento rápido sin contar con provisiones suficientes.

Más información sobre:
bancarrota
quiebra
bancos
modelos
redes neuronales

SINC | | 04 mayo 2015 09:23

<p>Los ratios financieros facilitan información al modelo para hacer las predicciones. / <a href="https://www.flickr.com/photos/89228431@N06/11221126413/in/photolist-i6zcWM-e5f8B1-ecLApo-4oBrZM-e4VHki-dapurN-6nuRxG-3TkQz-3Rcvq-rU7Gm-reLrWH-6nqHeZ-a7fJFg-2uQfF3-9e2Q41-5V9YmY-EsxyY-rwmZzF-hW21cp-4KgyKU-8U79pB-ao7tog-4iKRsq-7ecUx3-6nqHon-9dYKq2-fz5tqV-8SrrFb-aFdSqm-7HvWYs-6Ssfaa-ecEVHc-L6SBr-7VXZUK-ecEVoX-6EYUNH-547Ek9-83Uxru-cBtsGQ-ecLzxA-JmU2w-fqV9tt-ecEV44-ecEWGK-pHer3P-7D9m3v-aArRiy-4bc7op-cCeD1J-ayST4a" target="_blank">reynermedia</a></p>

Los ratios financieros facilitan información al modelo para hacer las predicciones. / reynermedia

Desde que empezó la crisis en 2008 han quebrado más de 300 bancos en EE UU, un país que cuenta con una amplia base de datos sobre sus 7.000 entidades financieras y donde diariamente se publican las que entran en bancarrota. Esta información, facilitada por la Federal Deposit Insurance Corporation, ha servido para validar el modelo que han desarrollado dos economistas de la Universidad de Valladolid para calcular la probabilidad de quiebra de los bancos.

Los investigadores partieron de los ratios o índices financieros de las entidades estadounidenses a lo largo del periodo 2002-2012. A partir de estos datos y operando en distintos espacios temporales, el modelo logró deducir cuantos quebrarían entre mayo de 2012 y diciembre de 2013. Los resultados acertaron en el 96% de los casos, según el estudio que publican en la revista Expert Systems with Applications.

La metodología también permite generar un mapa bidimensional para visualizar el conjunto del sistema financiero y las entidades problemáticas

“Hay muchos análisis que predicen con un año de antelación la quiebra de los bancos, un margen a menudo  demasiado corto para tomar acciones que lo puedan evitar”, señala a Sinc Iván Pastor, uno de los autores, quien destaca la posibilidad de predicción de sus algoritmos a corto, medio y largo plazo. En su caso corresponde, respectivamente, a uno, dos y tres años.

El investigador destaca que el modelo lo crearon empleando redes neuronales, un conjunto de algoritmos que funciona imitando el comportamiento del sistema nervioso humano y que resultan muy útiles en la detección de patrones. Estos son los que sirven para predecir la posibilidad de quiebra.

“Además, esta metodología permite generar un mapa bidimensional que ayudará a las autoridades bancarias y a los reguladores a visualizar el conjunto del sistema financiero e identificar entidades problemáticas en muy corto plazo, así como entidades más solventes pero que a largo plazo podrían presentar problemas”, apunta Pastor.

Gracias a estos análisis también se pudo observar los diferentes caminos que llevan a la quiebra a una entidad financiera. Al aplicar el modelo se ha observado que las que presentaban mayor riesgo fueron las que tenían una alta concentración en préstamos a la construcción, las que tuvieron un proceso de crecimiento muy rápido, sin una capitalización adecuada y con bajos niveles de provisiones.

Potencial para predecir en otras fechas y países

“Los resultados que obtuvimos a diciembre 2013 mostraban que el sistema financiero de EEUU había mejorado respecto a los momentos más duros de la crisis, pero aún existían entidades con alta probabilidad de quiebra, aunque su tamaño era, en general, pequeño”, añade Pastor, quien reconoce que el modelo no está actualizado para los datos de 2015, “aunque, contando con tiempo suficiente, podríamos hacerlo”.

El experto confirma que esta metodología se podría aplicar para conocer la probabilidad de bancarrota en las entidades financieras de otros países, con el necesario reajuste y adecuación a las características propias de cada nación.

“Por ejemplo, algunos ratios financieros empleados en EE UU no están disponibles en España, ya que la información pública en nuestro país es menor”, señala Pastor, aunque adelanta otro estudio que tienen en marcha: “Estamos a la espera de que nos publiquen un trabajo sobre las Cajas de Ahorros Españolas, donde analizamos como evolucionaron muchas de ellas hasta la quiebra o el rescate, además de identificar los factores que diferencian entre entidades saneadas y fallidas”.

Referencia bibliográfica:

Félix J. López Iturriaga e Iván Pastor Sanz. “Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks”. Expert Systems with Applications 42: 2857–2869, 15 de abril de 2015.

Si eres periodista y quieres el contacto con los investigadores, regístrate en SINC como periodista.

Zona geográfica: España
Fuente: SINC

Comentarios

  • santaklaus |11. mayo 2015 12:15:15

    Seamos pragmáticos. Y honestos con nosotros mismos. Los bancos no quiebran si los Gobiernos no quieren. En España lo sabemos de sobra. Bancos que no valían un céntimo porque han sido saqueados han sido reflotados con el dinero público. Los bancos no quiebran; los gobiernos deciden qué banco ya no es "amigo" y eso es todo.
    Apuesto a que las redes neuronales no han tenido en cuenta nada de esto.

    Responder a este comentario

QUEREMOS SABER TU OPINIÓN

Por favor, ten en cuenta que SINC no es un consultorio de salud. Para este tipo de consejos, acude a un servicio médico.

AGENCIA SINC EN TWITTER