Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Un péptido del veneno de serpiente de cascabel ‘muerde’ a las superbacterias

Un fragmento del péptido crotalidicina, procedente del veneno de una serpiente de cascabel de América del Sur, puede matar bacterias sin afectar a las células sanas. Así se desprende de un trabajo sobre cepas de bacterias que causan infecciones graves en los hospitales.

Serpiente cascabel. / UPF

Un estudio internacional ha demostrado por qué un fragmento de una proteína del veneno de una serpiente de cascabel podría ser la base para una alternativa a los antibióticos convencionales. La investigación, publicada en la revista Journal of Biological Chemistry ha sido liderada por David Andreu, líder del Grupo de Investigación en Proteómica y Química de Proteínas de la Universidad Pompeu Fabra (UPF) y han participado investigadores de Australia, Portugal, Brasil y Francia.

La investigación es significativa debido al aumento de las cepas de bacterias resistentes a los fármacos y los pocos antibióticos convencionales que se desarrollan actualmente. "Este es un ejemplo de cómo podemos coger un elemento que nos proporciona la naturaleza e intentar comprender cómo funciona, y así modificarlo para hacerlo más potente o estable para utilizarlo como alternativa a los fármacos que tenemos actualmente", dice Sónia Troeira Henriques, del Instituto de Biociencias Moleculares (IMB) de la Universidad de Queensland, Australia.

"Como las células del cuerpo que alojan la infección tienen membranas neutras, no se ven afectadas", añade la científica

El estudio mostró que el fragmento del péptido crotalidicina se dirige a la superficie de la bacteria mediante atracciones electrostáticas, provocadas por diferencias en las propiedades de las membranas. "El péptido es positivo mientras que la bacteria es negativa, lo cual permite que el péptido mate a las bacterias cuando se inserta en la membrana", explica Henriques. "Como las células del cuerpo que alojan la infección tienen membranas neutras, no se ven afectadas", añade.

Clara Pérez-Peinado, primera autora del trabajo y actualmente doctoranda en el equipo de David Andreu en el departamento de Ciencias Experimentales y de la Salud (CEXS), habia descubierto anteriormente que el fragmento conservaba la potencia antimicrobiana del péptido completo, pero era inocuo para células no bacterianas, y además mucho más resistente a las proteasas del sérum, una propiedad no habitual en péptidos y muy prometedora para la aplicación farmacológica.

La investigación se llevó a cabo sobre cepas de bacterias entre las cuales se encontraba una de las que causa infecciones graves en los hospitales. Acostumbra a ser muy difícil atacar a estas bacterias porque tienen una membrana extra y a menudo están camufladas por una cápsula protectora.

“Los resultados apuntan a un papel prometedor para este fragmento de crotalidicina y siguen confirmando que los péptidos, adecuadamente rediseñados, son antibióticos eficaces contra bacterias resistentes”, señala David Andreu.

Referencia bibliográfica:

Pérez-Peinado C, Almeida S, Domingues M, Benfield A, Freire JM, Radis-Baptista G, Gaspar D, M Castanho, Craik D, Henriques S, Veiga A, Andreu D. "Mechanism of bacterial membrane permeabilization of crotalicidin (Ctn) and its fragment Ctn[15-34], antimicrobial peptides from rattlesnake venom". Journal of Biological Chemistry, February 2018.

Los investigadores participan en un programa de intercambio de personal de investigación e innovación financiado por la Comisión Europea dentro del marco Horizonte 2020. Gracias a este programa que permite la movilidad y transferencia de conocimiento entre instituciones, Clara Pérez-Peinado ha realizado una larga estancia en el Instituto de Medicina Molecular, Universidad de Lisboa, y David Andreu y Sira Defaus, del mismo laboratorio, estancias de seis meses en el IMB en Brisbane, Australia.

Fuente: UPF
Derechos: Creative Commons
Artículos relacionados
Juan Lerma, director del Centro Internacional de Neurociencias Cajal
“Conocer mejor el cerebro nos permitirá diseñar estrategias para tratar las enfermedades mentales”

El neurocientífico alicantino está al mando de este nuevo centro del CSIC con el objetivo de convertirlo en un referente mundial en el estudio del cerebro. Su intención es ponerlo en marcha, darle forma y buscar a un nuevo director “más joven” que será elegido por un comité internacional.

Las ‘tatarabuelas’ de las tijeras moleculares CRISPR harán más sencilla la edición genética

Investigadores de EE UU liderados por Feng Zhang, uno de los pioneros del corta-pega genético, han descubierto una clase de nucleasas que podrían ser los ancestros de las más utilizadas, Cas9 y Cas12. Su pequeña longitud permitiría facilitar el proceso.