Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Agencia Sinc
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
La investigación se publica en el último número de la revista ‘Science’

Descubren la arquitectura genética que regula la floración del maíz

Al contrario que en el arroz y otros cereales, la floración del maíz no depende de unos pocos genes que interactúan entre ellos, sino que es el resultado de la acción de un gran número de genes con pequeños efectos aditivos, sin que la interacción entre ellos tenga nada que ver. El hallazgo, que permitirá predecir adecuadamente el tiempo de floración de cada planta de la especie, es fruto de un equipo internacional liderado investigadores estadounidenses y que cuenta con la participación del Consejo Superior de Investigaciones Científicas (CSIC).

Investigadores en uno de los campos de maíz de Estados Unidos que se usó para el estudio. La investigadora del CSIC Cinta Romay es la tercera por la izquierda.

Los investigadores examinaron los genotipos de casi un millón de plantas en varias localizaciones (ocho) de Estados Unidos. El objetivo era conocer la arquitectura genética de su floración (el número, localización y relación de los genes que la regulan), dada su importancia evolutiva para la adaptación de la planta a diferentes ambientes. Al contrario de lo esperado, no se halló que la interacción entre genes (epistasis), el origen geográfico o las interacciones con el ambiente tuvieran un papel preponderante, sino que se identificaron numerosos genes cuyos efectos se sumaban para determinar la floración. “Sería un mecanismo similar al que regula la altura humana”, explica Mª Cinta Romay, investigadora del CSIC en la Misión Biológica de Galicia (Pontevedra) y única firmante española del artículo.

“La floración del maíz parece estar regulada por un gran número de genes cuyos efectos se suman de manera aditiva, sin que la interacción entre ellos o con el medio ambiente cumpla un papel preponderante” continúa la investigadora. “De esta manera, conociendo el genotipo de la planta, un simple modelo aditivo parece ser suficiente para predecir adecuadamente la fecha de floración, al contrario de lo que ocurre en otras especies, como el arroz o la Arabidopsis thaliana”, concluye Romay, que participó en el estudio mientras disfrutaba de una beca de investigación en la Universidad de Cornell (Estados Unidos).

Para llevar a cabo el estudio los investigadores usaron una técnica llamada mapeo de asociación anidado. Para ello seleccionaron 25 líneas puras de maíz que recogían gran parte de la variabilidad existente para la especie y las cruzaron con la línea B73, cuyo genoma está prácticamente secuenciado. A partir de este cruce se obtuvieron 5000 líneas recombinantes,: plantas de nueva generación creadas a partir de dos líneas puras que combinan las características de ambas.

“El uso de población producida por mapeo de asociación anidado proporciona una potente herramienta genética, lo que permitirá el estudio de otras caracteres complejos. Dichos estudios podrán aplicarse para mejorar la seguridad alimentaria o hacer que la producción de maíz sea más sostenible”, explica la investigadora del CSIC.

Un cereal muy demandado

El maíz es el cereal más cultivado en el mundo, con una producción superior a la del trigo y el arroz. En muchos países, sobre todo de América, el maíz constituye la base de la alimentación, un papel similar al que ocupa el trigo en Europa Occidental. Según datos de la FAO de 2007, en el mundo se cultivan 159 millones de hectáreas de maíz, que producen 785 millones de toneladas de grano al año. Los mayores productores son Estados Unidos (39% de la producción mundial), China (21%( y Brasil (6%). En Europa se producen 55’5 millones de toneladas al año, de las que España aporta 3’5 millones.

Referencias:

E.S. Buckler; J.B. Holland; P.J. Bradbury; C. Browne et al. “The Genetic Architecture of Maize Flowering Time”, Science, 7 August 7 2009 vol. 325

Fuente: CSIC
Derechos: Creative Commons
Artículos relacionados