Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Física

Efectos relativistas cuando dos objetos se tocan

Son conocidos los efectos de la relatividad a escala cosmológica, como en los eclipses planetarios o en las galaxias que actúan como lentes gravitatorias, pero las leyes de la relatividad de Einstein también determinan las distancias a las que las fuerzas entre dos materiales que se van a tocar empiezan a actuar. Investigadores de la Universidad de Alicante lo han demostrado con átomos de oro. Estos efectos son fundamentales para entender cómo se forman los enlaces moleculares.

Simulación del acercamiento de átomos en oro. / UA

Un equipo liderado por los investigadores María José Caturla y Carlos Untiedt del Departamento de Física Aplicada de la Universidad de Alicante (UA) ha desentrañado los mecanismos por los que dos objetos se 'sienten' uno al otro antes de 'tocarse', y cómo es el contacto entre los primeros átomos de ambos materiales.

Este hallazgo, que demuestra la importancia que tienen los efectos relativistas en la interacción a largo alcance entre objetos, ha sido publicado en dos artículos de la revista insignia de la Sociedad Americana de Física, la Physical Review Letters.

En concreto, los científicos han descubierto que las leyes de la relatividad de Albert Einstein son las que determinan las distancias a las que las fuerzas entre los objetos empiezan a actuar.

“Es sorprendente ver la influencia que tiene la relatividad especial de Einstein en algo tan cercano cómo es el proceso por el que dos objetos se tocan", dice un investigador

“Es sorprendente ver la influencia que tiene la relatividad especial de Einstein en algo tan cercano cómo es el proceso por el que dos objetos se tocan. Hemos demostrado que debido a este efecto los elementos más pesados, como el oro, ejercen fuerzas sobre otros a más larga distancia de lo que esperaríamos si no fuese por la relatividad especial”, explica el director de Departamento Física Aplicada de la UA, Carlos Untiedt.

Estas fuerzas son muy importantes para entender distintos procesos que se producen a nuestro alrededor cómo las reacciones químicas o la fricción por lo que, añade el investigador, “estos efectos serían fundamentales para entender de forma cuantitativa la formación de las uniones moleculares entre átomos”.

Como apuntan los autores, “la teoría de la relatividad especial de Einstein es útil para planear viajes por el espacio, sino que juega también un papel importante en tareas cotidianas y permite, por ejemplo, que el sistema GPS pueda calcular con precisión una posición”.

“Más aún, suscribe Untiedt, la relatividad de Einstein es relevante en fenómenos a escala cósmica o global, y también es crucial a la hora de entender ciertas propiedades de la materia a escala microscópica: conforme avanzamos en la tabla periódica hacia materiales más pesados, los electrones se mueven alrededor del núcleo cada vez más rápido, alcanzando velocidades a las que los efectos relativistas no pueden ser despreciados”.

Efectos relativistas mayores en el oro

Este es el caso del oro, que tiene una estructura electrónica similar a la plata y el cobre, pero una masa atómica considerablemente mayor. “Los efectos relativistas son, por tanto, mayores en el oro y determinan muchas de sus propiedades ya que al cambiar las propiedades electrónicas de este metal, la relatividad afecta, entre otras cosas, al modo en que se enlazan sus átomos”, afirma el investigador.

“En nuestro trabajo –añade–, mostramos cómo la relatividad afecta al modo en que dos electrodos de oro entran en contacto. Para ello, medimos la distancia a la que el último átomo de un electrodo metálico es atraído por un segundo electrodo que se aproxima a él”.

Gracias a los experimentos desarrollados, los investigadores han encontrado que en el caso del oro, los electrodos interaccionan a distancias mucho más lejanas de lo que ocurre para la plata o el cobre.

“Con ayuda de simulaciones teóricas, se demuestra como la atracción entre átomos de oro a largas distancias proviene principalmente de contribuciones relativistas", apunta Untiedt, que añade: "En definitiva, se muestra la influencia de los efectos relativistas en las propiedades mecánicas de los metales a escala microscópica”.

Referencia bibliográfica:

Influence of Relativistic Effects on the Contact Formation of Transition Metals”, M. R. Calvo, C. Sabater, W. Dednam, E. B. Lombardi, M. J. Caturla, C. Untiedt. Physical Review Letters, 2018.

Role of first-neighbor geometry in the electronic and mechanical properties of atomic contacts”, C. Sabater, W. Dednam, M. R. Calvo, M. A. Fernández, C. Untiedt, M. J. Caturla. Physical Review B, 2018.

Fuente: Universidad de Alicante
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Premio BBVA a los pioneros de la criptografía y computación cuánticas
SINC

El Premio Fronteras del Conocimiento en la categoría de Ciencias Básicas ha recaído este año en el físico Charles Bennett, el informático Gilles Brassard y el matemático Peter Shor. Los dos primeros inventaron la criptógrafía cuántica hace cuatro décadas, y diez años más tarde Shor presentó el algoritmo que lleva su nombre, unos avances fundamentales hacía la futura computación cuántica.

Alt de la imagen
Cómo evaluar con sonidos el estado de la piedra ornamental

Investigadores de la Universidad de Jaén han creado una herramienta que analiza el interior de la piedra ornamental sin necesidad de romperla, lo que permite conocer sus características físicas y detectar posibles fracturas. La novedad de este sistema radica en el uso del eco emitido por un golpe controlado como indicador de la durabilidad y resistencia de la roca.