Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

La trenza más pequeña del mundo

En la naturaleza se pueden encontrar moléculas trenzadas, como el ADN circular o diversas proteínas, pero a los científicos les cuesta mucho sintetizarlas en el laboratorio. Ahora, por primera vez, han conseguido crear una con tres hebras. La diminuta ‘nanotrenza’ tiene 192 átomos y ocho cruces, una estructura anudada que ayudará al desarrollo de materiales más resistentes.

Recreación del ‘nanonudo’ fabricado por los investigadores, la trenza más pequeña del mundo. / Stuart Jantzen/www.biocinematics.com

Investigadores de la Universidad de Mánchester (Reino Unido) han logrado sintetizar una trenza molecular de tres hebras o ‘hilos’, un avance sin precedentes que publican esta semana en la revista Science.

Este nudo molecular con ocho cruces es el más complejo 'atado’ hasta ahora por los científicos

Se trata de un ‘nanonudo’ fabricado con una ‘cuerda’ de 192 átomos, con ocho cruces y de aproximadamente 20 nanómetros de longitud.

Los hilos moleculares se tejen alrededor de iones de hierro mediante una técnica de autoensamblaje, y sus extremos se fusionan con un catalizador hasta formar un lazo cerrado.

Este tipo de moléculas trenzadas se encuentran de forma natural en cadenas poliméricas, el ADN circular y algunas proteínas. Sin embargo, de los más de 6.000 millones de nudos conocidos, los científicos sólo han conseguido sintetizar tres tipos de topologías en el laboratorio, y hasta esta investigación, ninguna con tres hebras.

"El nudo molecular de ocho cruces es la molécula regular 'tejida' más compleja hecha por los científicos hasta ahora", destaca el profesor David Leigh, coautor del estudio, que señala: "Atar nudos es un proceso similar a tejer, por lo que las técnicas que desarrollamos también se podrían aplicar para fabricar tejidos con filamentos moleculares".

Tejer nuevos nanomateriales

“Por ejemplo, los chalecos antibalas y armaduras modernas están hechas de kevlar, un plástico de varillas moleculares rígidas y alineadas –explica–, pero las hebras de polímero entretejidas tienen el potencial de crear materiales mucho más resistentes”.

Los autores recuerdan que algunos polímeros, como la seda de araña, pueden ser dos veces más fuertes que el acero, por lo que conseguir trenzar hebras poliméricas puede conducir a nuevas generaciones de materiales mucho más ligeros, superresistentes y flexibles que los actuales, que se podrán aplicar en industrias como la textil y la construcción.

-----------------------------------------------------------------------------------------

Proceso de ensamblaje del nudo molecular y vídeo en 3D
(D.Leigh-University of Manchester//R.W.McGregor-Mcgregorfineart.com)

Referencia bibliográfica:

J.J. Danon et al. “Braiding a molecular knot with eight crossings". Science, 12 de enero de 2017.

Fuente: SINC
Derechos: Creative Commons
Artículos relacionados
Nobel de Química para List y MacMillan por su ingeniosa herramienta para construir moléculas

El investigador alemán Benjamin List y el escocés David MacMillan han sido galardonados con el Premio Nobel de Química 2021 “por el desarrollo de la organocatálisis asimétrica”, una novedosa herramienta de construcción molecular. Este avance ha tenido un gran impacto en la investigación farmacéutica y ha favorecido que la química sea más ecológica.

Primeras imágenes moleculares de un receptor olfativo en funcionamiento

Investigadores de la Universidad de Rockefeller (EE UU) han descrito el complejo mecanismo que utilizan los receptores olfatorios para detectar las moléculas odoríferas, y por primera vez ofrecen imágenes, obtenidas con microscopía crioelectrónica, de su estructura funcionando. Estos receptores son ‘promiscuos’, se pueden unir a un gran número de moléculas diferentes.