Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Las supernovas aceleran los protones de la radiación cósmica

Un estudio internacional, con participación de investigadores del Consejo Superior de Investigaciones Científicas, aporta por primera vez evidencias de que los protones procedentes de la Vía Láctea que llegan a gran velocidad y energía a la Tierra son acelerados durante las explosiones de estrellas masivas agotadas: las supernovas. Los resultados de este trabajo aparecen publicados en la revista Science.

Supernova

Cuando las estrellas explotan, las supernovas envían ondas de choque que aceleran los protones hasta crear rayos cósmicos a través de un proceso conocido como aceleración de Fermi, debido a que el físico Enrico Fermi fue el primero que planteó dicha hipótesis. / Greg Stewart. National Accelerator Laboratory.

Cuando las estrellas explotan, las supernovas envían ondas de choque que aceleran los protones hasta crear rayos cósmicos a través de un proceso conocido como aceleración de Fermi. / Greg Stewart. National Accelerator Laboratory.
Los protones de la radiación cósmica son acelerados por las supernovas . Foto: National Accelerator Laboratory

Un estudio internacional, con participación de investigadores del Consejo Superior de Investigaciones Científicas, aporta por primera vez evidencias de que los protones procedentes de la Vía Láctea que llegan a gran velocidad y energía a la Tierra son acelerados durante las explosiones de estrellas masivas agotadas: las supernovas. Los resultados de este trabajo aparecen publicados en la revista Science.

Supernova

Cuando las estrellas explotan, las supernovas envían ondas de choque que aceleran los protones hasta crear rayos cósmicos a través de un proceso conocido como aceleración de Fermi, debido a que el físico Enrico Fermi fue el primero que planteó dicha hipótesis. / Greg Stewart. National Accelerator Laboratory.

Cuando las estrellas explotan, las supernovas envían ondas de choque que aceleran los protones hasta crear rayos cósmicos a través de un proceso conocido como aceleración de Fermi. / Greg Stewart. National Accelerator Laboratory.
Los protones de la radiación cósmica son acelerados por las supernovas . Foto: National Accelerator Laboratory

Un estudio internacional, con participación de investigadores del Consejo Superior de Investigaciones Científicas, aporta por primera vez evidencias de que los protones procedentes de la Vía Láctea que llegan a gran velocidad y energía a la Tierra son acelerados durante las explosiones de estrellas masivas agotadas: las supernovas. Los resultados de este trabajo aparecen publicados en la revista Science.

La Tierra recibe constantemente el bombardeo de partículas que golpean las capas más exteriores de la atmósfera. Esta cascada de partículas o radiación cósmica está formada mayormente por protones procedentes de la Vía Láctea que llegan a una alta velocidad y con gran energía. Un equipo internacional de científicos, en el que participa el Consejo Superior de Investigaciones Científicas (CSIC), aporta por primera vez evidencias de que estos protones son acelerados durante las explosiones de estrellas masivas agotadas: las supernovas.

Trabajos anteriores habían sugerido ya que el origen de estos rayos cósmicos se encontraba en los restos de la explosión de una estrella, los denominados “remanentes de supernova”, pero la prueba definitiva era difícil de obtener debido a que estas partículas son desviadas en su camino hacia la Tierra.

Los investigadores han dado con la pista definitiva tras cuatro años de observaciones con el Large Area Telescope del telescopio espacial Fermi de la NASA

Los investigadores han dado ahora con la pista definitiva tras cuatro años –de 2008 a 2012– de observaciones con el Large Area Telescope del telescopio espacial Fermi de la NASA. En concreto, han estudiado los remanentes de supernova IC 433 y W44. Ambos están ubicados en la Vía Láctea, el primero en la constelación de Géminis, a unos 5.000 años luz de la Tierra, y el segundo en la constelación del Águila, a 10.000 años luz de distancia.

Huellas en el espectro

“Cuando los protones acelerados se topan con el material interestelar, producen otro tipo de partículas denominadas piones, que además son neutrales, y que a su vez se degradan y pasan a convertirse en rayos gamma. El análisis de los datos del espectro de radiación gamma nos ha permitido detectar la huella característica de la degradación de estos piones, la cual conecta inequívocamente la emisión de rayos gamma con los protones acelerados en los remanentes de supernova”, explica la investigadora del CSIC en el Instituto de Ciencias del Espacio Daniela Hadasch.

Si el hallazgo tiene importancia es porque hay múltiples procesos en el universo que producen la emisión de rayos gamma. Cuando esta radiación es captada por un telescopio, es complicado distinguir si ha sido causada por protones o electrones de alta energía.

Los investigadores esperan ahora determinar cómo se produce exactamente esa aceleración de la radiación cósmica en los restos de las supernovas y cuál es la energía que pueden alcanzar estas partículas.

Referencia bibliográfica:

M. Ackermann et al. "Detection of the Characteristic Pion‐Decay Signature in Supernova Remnants". Science. DOI: 10.1126/science.1231160.

Fuente: CSIC
Derechos: Creative Commons

Solo para medios:

Si eres periodista y quieres el contacto con los investigadores, regístrate en SINC como periodista.

Artículos relacionados
Descubierta una cercana subtierra rica en hierro

A unos 30 años luz de la Tierra, el exoplaneta GJ 367 b orbita alrededor de una enana roja en menos de 8 horas. Su tamaño es ligeramente mayor que el de Marte y su masa la mitad de la de nuestro planeta, aunque presenta una densidad cercana a la del hierro puro, según un estudio internacional en el que participa el Instituto de Astrofísica de Canarias.

Los planetas gigantes alcanzan su ‘madurez’ antes de lo que se pensaba

Un estudio con participación española revela que los planetas gaseosos del sistema V1298 Tau han alcanzado su tamaño final tan solo 20 millones de años después de su formación. El hallazgo desafía los modelos actuales de formación y evolución planetaria para este tipo de objetos astronómicos.