Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Los experimentos del LHC vuelven a funcionar con nuevo récord de energía

Tras una parada técnica de casi dos años y varios meses de puesta en marcha, el Gran Colisionador de Hadrones del CERN ha proporcionado colisiones a sus experimentos a una energía sin precedentes de 13 teraelectronvoltios (TeV), casi el doble de la utilizada en su primer ciclo de funcionamiento. El LHC funcionará de forma continua los próximos tres años. Cerca de 200 científicos y técnicos de diez centros de investigación españoles participan en este gran proyecto de la física.

Primeras colisiones estables a 13 TeV en el experimento CMS. / CERN

El Gran Colisionador de Hadrones (LHC, por sus siglas en inglés) del CERN ha comenzado hoy a proporcionar datos para la física por primera vez en 27 meses. Tras una parada técnica de casi dos años y varios meses de puesta en marcha, el LHC proporciona ahora colisiones a todos sus experimentos a una energía de 13 teraelectronvoltios (TeV), casi el doble de la energía de colisión de su primera fase o Run 1.

Arranca así el segundo ciclo de funcionamiento del LHC o Run 2, abriendo el camino a nuevos descubrimientos. El enorme colisionador, un anillo de 27 kilómetros, funcionará de forma continua durante los próximos tres años.

Se inicia una nueva era en la física de partículas al tomar datos a 13 TeV

"Con la vuelta del LHC al modo de producción de colisiones celebramos el final de dos meses de comisionado de los haces", dice el director de Aceleradores y Tecnología del CERN, Frédérick Bordry. "Es un gran logro y un momento gratificante para muchas personas que han dedicado gran parte de su tiempo para que esto suceda".

Hoy a las 10:40 horas, los técnicos que operan el LHC declararon 'haces estables', la señal para los experimentos del LHC para comenzar a tomar datos. Los haces están formados por cadenas de paquetes de protones que viajan casi a la velocidad de la luz en el LHC. Las cadenas de paquetes circulan en direcciones opuestas, guiadas por potentes imanes superconductores.

El LHC se llenó hoy con seis paquetes, cada uno con 100.000 millones de protones. Este número se incrementará progresivamente hasta los 2.808 paquetes por haz, permitiendo al LHC producir hasta mil millones de colisiones cada segundo.

Durante el primer ciclo de funcionamiento del LHC, los experimentos ATLAS y CMS anunciaron el descubrimiento del bosón de Higgs, la última pieza del puzle del modelo estándar, la teoría que describe las partículas elementales que componen la materia del universo visible y sus interacciones.

"Los primeros tres años de funcionamiento del LHC, que culminaron con un gran descubrimiento en julio de 2012, fueron solo el comienzo de nuestro viaje. ¡Ahora es el momento de nueva física!", destaca el director general del CERN, Rolf Heuer. "Hemos visto fluir los primeros datos. Vamos a ver lo que nos revelan sobre el funcionamiento del universo".

Profundizar en el modelo estándar y más allá

En el Run 2 que comienza hoy, los físicos tienen la intención de profundizar en el modelo estándar, e incluso encontrar evidencias de nuevos fenómenos físicos más allá de sus límites que podrían explicar misterios como la materia oscura, que compone un cuarto del universo, o la aparente predilección de la naturaleza por la materia sobre la antimateria, sin la cual no existiríamos.

Los nuevos datos podrían explicar misterios como la materia oscura

Durante los dos años de parada técnica, los cuatro grandes experimentos ALICE, ATLAS, CMS y LHCb se sometieron también a un importante programa de mantenimiento y mejora para prepararse para la nueva frontera de energía.

"Las colisiones que estamos viendo hoy indican que el trabajo que hemos hecho los últimos dos años para preparar y mejorar nuestro detector ha sido exitoso, y marcan el inicio de una nueva era de la exploración de los secretos de la naturaleza", dice el portavoz de CMS Tiziano Camporesi. "Apenas podemos expresar la emoción de nuestra colaboración, especialmente la de los más jóvenes".

"El éxito del reinicio de la toma de datos para la física, con todos los sistemas en perfectas condiciones para recopilar, procesar y analizar nuevos datos rápidamente, es un testimonio del compromiso e inmenso y duro trabajo de muchas personas de toda la colaboración ATLAS durante el largo parón", apunta el portavoz de ATLAS Dave Charlton. "Ahora empezamos a profundizar en los nuevos datos para ver lo que la naturaleza nos reserva en estas nuevas energías inexploradas".

"Todo el mundo en la colaboración está muy emocionado ahora que el nuevo ciclo ha comenzado", explica el portavoz de LHCb Guy Wilkinson. "Nos permitirá continuar investigando los rompecabezas de nuestros estudios del Run 1, y para comprobar con mayor sensibilidad la diferencia de comportamiento entre materia y antimateria".

"Las colisiones entre protones nos proporcionarán datos de referencia esenciales para el funcionamiento con haces de iones pesados previsto para el final de año, en el que el LHC proporcionará mayor energía y luminosidad comparados con el Run 1", añade el portavoz de ALICE Paolo Giubellino. "Tenemos la intención de ampliar la exploración de las interesantes señales que surgieron en el Run 1".

Además de estas grandes colaboraciones, tres experimentos más pequeños, TOTEM, LHCf y MoEDAL, estarán entre los que busquen nueva física a la nueva frontera de energía del LHC de 13 TeV.

Participación española en el LHC

Unos 200 científicos y técnicos españoles participan en los principales experimentos del LHC. En el experimento ATLAS participan el Instituto de Física Corpuscular (IFIC, CSIC-Universidad de Valencia); el Instituto de Física de Altas Energías (IFAE), consorcio de la Generalitat de Catalunya y la Universitat Autònoma de Barcelona; el Instituto de Microelectrónica de Barcelona (CNM‐IMB‐CSIC); y la Universidad Autónoma de Madrid (UAM).

En CMS colaboran el Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT); el Instituto de Física de Cantabria (IFCA, CSIC-Universidad de Cantabria); la Universidad de Oviedo (UO) y la Universidad Autónoma de Madrid (UAM).

En LHCb participan la Universidad de Santiago de Compostela (USC), la Universidad de Barcelona (UB), la Universidad Ramón Llull (URL) y el Instituto de Física Corpuscular (IFIC, CSIC-UV). En ALICE lo hacen la Universidad de Santiago de Compostela (USC) y el CIEMAT.

La participación científica española en el LHC ha contado con el apoyo del Centro Nacional de Física de Partículas Astropartículas y Nuclear (CPAN), proyecto Consolider-Ingenio 2010.

Fuente: CPAN
Derechos: Creative Commons
Artículos relacionados
Nueva vía para crear ‘cristales de tiempo’

Con la ayuda de un supercomputador, científicos de las universidades de Granada y Tubinga (Alemania) han descubierto una forma de generar cristales de tiempo, un estado de la materia con estructura periódica que se repite en el tiempo. Se trata de un estudio teórico basado en las transiciones de fase que ocurren en extrañas fluctuaciones de sistemas de muchas partículas.

Más de 30 millones de euros para proyectos científicos europeos coordinados desde España

El Consejo Europeo de Investigación (ERC) ha anunciado los proyectos ganadores de las Synergy Grant 2020, unas ayudas destinadas a resolver problemas científicos excepcionalmente complejos. Entre ellos figuran la iniciativa de IMDEA Nanociencia para analizar la interacción de luz y materia en attosegundos, el estudio del CSIC sobre la influencia de los artefactos culturales en la mente humana y un experimento liderado por el DIPC y la Universidad del País Vasco para averiguar la naturaleza de los neutrinos.