Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Dirigen la muerte programada, esencial para evitar el cáncer

Observados por primera vez los agujeros en forma de dónut de las proteínas asesinas

Investigadores españoles y alemanes han conseguido ver por primera vez los poros, con forma de anillo y media luna, que perfora la proteína Bax en la membrana de las mitocondrias. El avance, logrado gracias a microscopios de superresolución, puede ayudar a encontrar el ‘santo grial’ del suicidio celular, un proceso crucial para evitar el cáncer.

Imagen de microscopía confocal donde se observa una célula de mamífero entrando en apoptosis o suicidio celular. Las mitocondrias se muestran en magenta y la proteína Bax en verde, organizada en zonas donde las mitocondrias se están fragmentando. Los detalles o zooms son estructuras de Bax (en naranja) captadas por microscopía de superresolución en forma de anillos, arcos y líneas. / R. Salvador-Gallego

La muerte es esencial para la vida, al menos a nivel celular. El desarrollo de los órganos depende en buena medida de que se produzca un equilibrio perfecto entre las células que crecen y se dividen y aquellas que perecen. Para que esto ocurra, las células programan su propia destrucción a través de un proceso denominado apoptosis, el suicidio celular. Si ocurre algún fallo en esta muerte programada, las células proliferan de forma descontrolada y se puede originar un cáncer.

El suicidio celular está mediado por la proteína Bax en última instancia

El complejo mecanismo de la apoptosis está gobernado por una familia de proteínas, las Bcl-2, que forman una gran red de interacciones moleculares para regular la permeabilización de la membrana externa de las mitocondrias, la central energética de la célula. Este paso es considerado como el punto de no retorno del suicidio celular, y está mediado en última instancia por la proteína Bax, un miembro esencial de esa familia cuya función es perforar la membrana.

Cuando la célula está estresada por el estímulo apoptótico, Bax activa su instinto asesino y se incrusta en la membrana mitocondrial, reclutando a otras unidades para formar grandes conglomerados. Estos terminan por romper la membrana externa de la mitocondria haciendo un agujero o poro, lo que permite que se liberen proteínas como el citocromo c desde el espacio intermembrana al interior celular para culminar el proceso suicida.

Poros polémicos que se consiguen observar

“El mecanismo que sigue la proteína Bax para dañar irreversiblemente a la célula todavía es una incógnita; y de hecho, la existencia de estos poros hasta ahora no ha estado libre de polémica, ya que nadie había conseguido observarlos en mitocondrias de células”, explica a Sinc la bioquímica española Raquel Salvador-Gallego, investigadora de la Universidad de Tubinga (Alemania) y coautora del trabajo.

Pero ver es creer. Esta bioquímica, junto con otros colegas de su universidad y diversos centros alemanes ha conseguido visualizar, con la ayuda de microscopios de superresolución, las estructuras nanométricas que están detrás de la organización de Bax durante la apoptosis. El estudio es portada esta semana en The EMBO Journal.

Las imágenes de superresolución muestran que las proteínas Bax (en líneas, arcos y anillos) median en la permeabilización de la membrana externa de las mitocondrias durante la apoptosis. / The Embo Journal/ R. Salvador-Gallego et al.

“Sorprendentemente, hemos podido observar estructuras muy bien definidas de Bax en forma de anillos, arcos y líneas a lo largo de las mitocondrias, que son típicas de esta proteína en su forma activa y que solo están presentes cuando la célula se está muriendo”, destaca Salvador-Gallego.

El equipo, coordinado por la también española Ana García-Sáez, ha comprobado que estos característicos anillos y arcos son capaces de perforar membranas artificiales que simulan la composición lipídica de la mitocondria, por lo que no dejan lugar a dudas de que están estrictamente relacionados con la función de Bax durante la apoptosis.

Portada de The EMBO Journal. / EMBO

La bioquímica resume que este trabajo “propone un nuevo mecanismo de acción de Bax y confirma la existencia de estos poros, proporcionando una pieza importante en el camino para resolver el gran puzle apoptótico”.

Evidencias seductoras

En la misma revista aparece otro artículo, liderado por el investigador Stefan Jakobs del Centro Médico Universitario de Gotinga (Alemania), donde se confirma con técnicas complementarias de superresolución la existencia de los anillos de Bax, que potencialmente también se pueden unir a proteínas Bak, otros miembros de la familia Bcl-2.

“Conocer cómo las proteínas asesinas Bax y Bak forman el ‘poro apoptótico’ responsable del daño mitocondrial irreversible, que daña las mitocondrias y conduce a la muerte celular, está considerado el ‘santo grial’ de la investigación en apoptosis”, valora también en The EMBO Journal el doctor Grant Dewson de la Universidad de Melbourne (Australia). Y concluye: “Ahora los dos estudios proporcionan evidencias seductoras sobre estos poros en forma de dónuts y medias lunas”.

Referencia bibliográfica:

Raquel Salvador-Gallego, Markus Mund, Katia Cosentino, Jale Schneider, Joseph Unsay,Ulrich Schraermeyer, Johann Engelhardt, Jonas Ries, Ana J García-Sáez. “Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores”. The EMBO Journal 35: 389–401, 18 de enero 2016 (on line), 15 de febrero 2016 (paper and cover).

Fuente: SINC
Derechos: Creative Commons

Solo para medios:

Si eres periodista y quieres el contacto con los investigadores, regístrate en SINC como periodista.

Artículos relacionados
Primeras imágenes moleculares de un receptor olfativo en funcionamiento

Investigadores de la Universidad de Rockefeller (EE UU) han descrito el complejo mecanismo que utilizan los receptores olfatorios para detectar las moléculas odoríferas, y por primera vez ofrecen imágenes, obtenidas con microscopía crioelectrónica, de su estructura funcionando. Estos receptores son ‘promiscuos’, se pueden unir a un gran número de moléculas diferentes.

Formulan un modelo que calcula el límite de los enlaces químicos

Científicos españoles han propuesto un modelo con la distancia mínima y máxima que aguantan dos átomos sin romperse, lo que facilitará la síntesis de nuevos compuestos, como fármacos o materiales, en los laboratorios.