Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Propuesta para incluir el Einstein Telescope en las futuras infraestructuras de investigación europeas

Cerca de 40 instituciones europeas, ocho de ellas españolas, han solicitado incorporar el Einstein Telescope en la próxima hoja de ruta del Foro Estratégico Europeo para Infraestructuras de Investigación (ESFRI). Este observatorio terrestre de ondas gravitacionales de tercera generación podría ubicarse en la frontera entre Bélgica, Alemania y Países Bajos, o bien en la isla italiana de Cerdeña.

Ilustración del propuesto Einstein Telescope, un avanzado observatorio de ondas gravitacionales. / ET

Tras los grandes descubrimientos de ondas gravitacionales realizados con los detectores LIGO en EE UU y Virgo en Europa, los científicos plantean la construcción de nuevos y más sensibles observatorios de este tipo para seguir avanzando en el nuevo campo de la astronomía que han abierto. 

Esta semana el consorcio del denominado Einstein Telescope (ET) ha presentado una propuesta para incluirlo en la actualización de 2021 de la hoja de ruta del Foro Estratégico Europeo para Infraestructuras de Investigación (ESFRI), el programa que describe las principales infraestructuras de investigación futuras en Europa. 

Se propone incluir este avanzado observatorio terrestre de ondas gravitacionales en la actualización de 2021 de la hoja de ruta del Foro Estratégico Europeo para Infraestructuras de Investigación (ESFRI) 

ET es el proyecto más ambicioso para un futuro observatorio terrestre de ondas gravitacionales. Su diseño conceptual ha sido apoyado por una subvención de la Comisión Europea, y el consorcio que lo promueve está integrado por multitud de centros de investigación y universidades en Europa con el apoyo político de cinco países: Bélgica, Polonia, España y Países Bajos, liderados por Italia. 

El Observatorio Gravitacional Europeo (EGO) del país transalpino será su sede temporal, pero el proyecto reúne a cerca de 40 instituciones científicas y académicas europeas de Francia, Alemania, Hungría, Noruega, Suiza y Reino Unido. 

Actualmente se están evaluando dos sitios para la realización de la infraestructura ET: Euregio Meuse-Rhine, en las fronteras de Bélgica, Alemania y los Países Bajos, y en Cerdeña, Italia. Estos sitios están siendo estudiados y se tomará una decisión sobre la ubicación dentro de los próximos cinco años. 

Nuevo observatorio para la astronomía multimensajero 

Los asombrosos logros científicos de los actuales Advanced Virgo y LIGO en los últimos cinco años iniciaron la era de la astronomía de ondas gravitacionales. La aventura comenzó con la primera detección directa de estas ondas en septiembre de 2015 y continuó en agosto de 2017 cuando los dos observatorios registraron ondas gravitacionales emitidas por dos estrellas de neutrones en fusión.

ET detectará fusiones de agujeros negros, lo que contribuirá a comprender mejor estos objetos, además de registrar miles de choques de estrellas de neutrones y explorar la física nuclear que controla las explosiones de supernovas 

Simultáneamente, las señales de este evento se observaron con una variedad de telescopios electromagnéticos (en la tierra y en el espacio) en todo el rango de longitud de onda observable, desde ondas de radio hasta rayos gamma. Esto marcó el comienzo de la era de la astronomía multimensajero con ondas gravitacionales

La reciente observación de Advanced Virgo y Advanced LIGO de la fusión de dos agujeros negros estelares para crear un agujero negro 142 veces más masivo que el Sol (el llamado agujero negro de masa intermedia) demostró la existencia de estos objetos previamente desconocidos en nuestro universo. 

Pero para aprovechar al máximo el potencial de esta nueva disciplina, se necesita una nueva generación de observatorios. El Einstein Telescope permitirá a los científicos detectar cualquier fusión de dos agujeros negros de masa intermedia y contribuir así a la comprensión de su formación y evolución. Esto arrojará nueva luz sobre el universo oscuro y aclarará los papeles de la energía oscura y la materia oscura en la estructura del cosmos. 

ET explorará la física de los agujeros negros en detalle. Estos son cuerpos celestes extremos que predice la teoría de la relatividad general de Albert Einstein, pero también son lugares donde esa teoría puede fallar debido al campo gravitacional extremadamente fuerte. 

ET operando en la noche. / Williams (STScI), the Hubble Deep Field Team and NASA

El nuevo telescopio también detectará miles de fusiones o coalescencias de estrellas de neutrones por año mejorando nuestra comprensión del comportamiento de la materia en condiciones tan extremas de densidad y presión que no se pueden producir en ningún laboratorio. Además, se podrá explorar la física nuclear que controla las explosiones de supernovas de las estrellas. 

La tercera generación

Estos desafíos científicos necesitan un nuevo observatorio, como ET, capaz de observar ondas gravitacionales con una sensibilidad de al menos un orden de magnitud mejor que los detectores actuales de la denominada segunda generación (hubo otra anterior). 

El Einstein Telescope formará parte de la tercera generación, se ubicará en una nueva infraestructura y aplicará tecnologías que mejorarán drásticamente las actuales, según sus promotores. Se espera que le siga un proyecto complementario en EE UU: Cosmic Explorer.

Participación española en el observatorio ET 

El Einstein Telescope ha despertado un gran interés en la comunidad científica española implicada en ondas gravitacionales, que incluye a todos los centros que actualmente participan en programas terrestres (LIGO / Virgo / KAGRA) y espaciales (LISA). Investigadores de España han contribuido de forma significativa al desarrollo del programa de física de ET, así como a la preparación del informe de su diseño técnico. 

Además, motivados por el desarrollo de nuevas tecnologías y los potenciales retornos significativos para la industria española, también se ha brindado un apoyo explícito por parte de instituciones de investigación, incluidas algunas Infraestructuras Científicas y Técnicas Singulares (ICTS, marcadas con un * en el siguiente listado). 

En total, 23 instituciones españolas se sumaron a la iniciativa ET ESFRI, lo que resultó en el apoyo político formal de España a la candidatura. Esta es la relación de las que la han promovido, indicando en negrita las ocho que han firmado la propuesta actual. 

1. ALBA Synchrotron*

2. Barcelona Supercomputing Center (BSC)*

3. Laboratorio Subterráneo de Canfranc (LSC)*

4. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)

5. Consejo Superior de Investigaciones Científicas (CSIC)

6. Institut de Ciències de l’Espai (ICE-CSIC)

7. Institut de Ciències del Cosmos (ICCUB)

8. Instituto de Estructura de la Materia (IEM)

9. Institut de Física d’Altes Energies (IFAE)

10. Instituto de Física Corpuscular (IFIC-CSIC)

11. Instituto de Física Teórica (IFT, UAM-CSIC)

12. Port d’informació Científica (PIC)

13. RedIris*

14. Universidad de Alicante (UA)

15. Universidad Autónoma de Madrid (UAM)

16. Universitat de les Illes Balears (UIB)

17. Universidad de Cádiz (UC)

18. Universidad de Murcia (UMU)

19. Universidad del País Vasco (UPV/EHU)

20. Universidad Politécnica de Madrid (UPM)

21. Universidad de Salamanca (USAL)

22. Universidad de Santiago de Compostela (USC)

23. Universitat de València (UV)

Y también apoyado por la Sociedad Española de Relatividad y Gravitación (SEGRE)

Fuente:
UIB
Derechos: Creative Commons.
Artículos relacionados
Alt de la imagen
Los diamantes encontrados en un meteorito de Sudán pueden explicarse sin necesidad de planetas perdidos

Las incrustaciones en una ureilita descubierta en Sudán son un misterio. Hace dos años se postuló que su origen solo podía estar en un cuerpo padre desaparecido del sistema solar, más grande que Mercurio, sometido a altas presiones. Ahora científicos italianos concluyen que este preciado material se pudo formar en pequeños planetesimales. 

Alt de la imagen
Una explicación a la dificultad de encontrar huellas de vida en las arcillas marcianas

Los minerales arcillosos descubiertos en el cráter Gale de Marte por el rover Curiosity son capaces de preservar compuestos orgánicos durante largos periodos de tiempo. Ahora científicos del Centro de Astrobiología han comprobado en cámaras de simulación que una breve exposición a fluidos ácidos complicaría enormemente la preservación de estos compuestos, algo a tener en cuenta en la búsqueda de vida en el planeta rojo.