No podrás conectarte si excedes diez intentos fallidos.
La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.
Selecciona el tuyo:
Licencia Creative Commons 4.0
No podrás conectarte si excedes diez intentos fallidos.
La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.
Selecciona el tuyo:
Muere Murray Gell-Mann, el nobel de Física que puso nombre a los quarks
Con choques entre electrones y antielectrones esta semana ha arrancado en Japón la máquina que aspira a batir el récord de colisiones entre partículas por segundo. Centros de investigación españoles participan en este gran experimento que trata de resolver el misterio de por qué la materia triunfó sobre la antimateria en el universo.
Científicos del experimento LHCb del CERN han logrado observar un nuevo barión que llevaban años buscando. Se trata de una partícula formada por un quark ligero up y, lo que es más novedoso: dos quarks pesados charm. Esto ofrece una herramienta única para probar la cromodinámica cuántica, la teoría que describe una de las cuatro fuerzas fundamentales de la naturaleza: la interacción fuerte.
La división de física nuclear de la European Physical Society ha premiado una investigación sobre las interacciones fuertes, una de las cuatro fuerzas fundamentales de la naturaleza y que une protones y neutrones dentro del núcleo del átomo. Su autor es el investigador José Manuel Alarcón Soriano, actualmente en la universidad alemana de Bonn, pero que presentó este trabajo como tesis en la Universidad de Murcia.
El experimento LHCb del gran colisionador de hadrones del CERN, en el que participan científicos españoles, ha detectado 'pentaquarks', una nueva clase de partículas constituidas por cinco quarks. Los investigadores han conseguido las primeras pruebas concluyentes de la existencia de estos estados de la materia.
Científicos de la colaboración LHCb. / CERN
La colaboración científica JET, donde participan físicos de la Universidad de Santiago de Compostela, ha medido de forma precisa la microestructura del plasma de quarks y gluones, el estado de la materia que dominó el universo instantes después del Big Bang. El resultado revela a escala microscópica cómo es este fluido, cuyo comportamiento lo hace ser un 'líquido perfecto'.
Dos colaboraciones científicas del acelerador Tevatron (EE UU) han descubierto una nueva forma de producir el quark top, la partícula elemental más pesada. Este fenómeno es muy infrecuente y completa las predicciones del modelo estándar para la producción del último quark descubierto. Investigadores del Instituto de Física de Cantabria (IFCA), el Instituto de Física de Altas Energías (IFAE) y el CIEMAT han participado en los experimentos del acelerador.
Un equipo internacional de científicos en el Jefferson Lab de EE UU ha registrado con una precisión sin precedentes cómo se rompe la simetría especular cuando se bombardean quarks con electrones diestros y zurdos. El modelo estándar de la física ya predecía esta pequeña violación de la paridad –así se llama– mientras actúa la fuerza débil entre las partículas.
Dos equipos de científicos, trabajando de forma independiente en dos aceleradores de partículas de China y Japón, han detectado lo que parece ser una partícula subatómica con cuatro quarks, lo nunca visto. Su nombre es Zc (3900), según anuncian esta semana en la revista Physical Review Letters.