Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

‘Big data’ para capturar CO2

Un equipo internacional de investigadores, con participación de la Universidad de Granada, ha utilizado técnicas de big data para seleccionar un material óptimo para la captura de CO2 a partir de una biblioteca virtual de más de 300.000 materiales metalorgánicos. El resultado es un 'adsorbaforo' formado por dos anillos aromáticos capaz de encapsular una molécula de CO2 como si fuera un sándwich.

Dentro de una red metalorgánica (MOF), se muestra la estructura del centro activo adsorbaforo para la molécula de CO2, consistente en dos anillos aromáticos separados por 7 amstrongs que son capaces de encapsular selectivamente una molécula de CO2 a modo de sándwich molecular. / UGR

El cambio climático se relaciona con la emisión antropogénica de dióxido de carbono procedente del uso intensivo de combustibles fósiles. En este sentido, el desarrollo de tecnologías eficientes para la captura y el almacenamiento de este CO2 se presenta como la solución más viable.

El científico de la Universidad de Granada (UGR) Jorge Rodríguez Navarro, investigador del departamento de Química Inorgánica, ha participado en un estudio internacional publicado en la revista Nature en el que se han utilizado técnicas de big data para seleccionar un material óptimo para la captura de CO2 de una biblioteca virtual de más de 300.000 materiales de tipo red metalorgánica (MOF, en inglés).

Con técnicas de big data se ha seleccionado un material óptimo, llamado adsorbaforo, para capturar CO2 a partir de una biblioteca virtual de más de 300.000 materiales

Los resultados muestran que los materiales reportados superan el comportamiento de materiales porosos clásicos, tales como zeolitas y carbones activados, en condiciones típicas de captura de CO2 de una central térmica.

La metodología de un fármaco

La metodología empleada se asemeja a la usada en la selección de fármacos por la industria farmacéutica, en la que se busca un fármaco que se ajuste al centro activo de una proteína causante de una enfermedad.

En este caso, la molécula objetivo es conocida (el CO2), mientras que el material óptimo no lo es. “Esta técnica de big data ha permitido reconocer el centro activo que presentan los materiales con mejor comportamiento y para el cual se ha acuñado la denominación de adsorbaforo”, señala el autor.

Este adsorbaforo de la molécula de dióxido de carbono consiste en dos anillos aromáticos separados por 7 amstrongs y que son capaces de encapsular selectivamente una molécula de CO2 a modo de un sándwich molecular.

Una vez seleccionados los materiales teóricos óptimos, estos se han sintetizado de forma dirigida y estudiado su comportamiento en la captura de CO2.

Referencia bibliográfica:

Boyd, P.G., Chidambaram, A., García-Díez, E. et al. "Data-driven design of metal–organic frameworks for wet flue gas CO2 capture". Nature 576, 253–256 (2019) doi:10.1038/s41586-019-1798-7 https://www.nature.com/articles/s41586-019-1798-7

Fuente:
UGR
Derechos: Creative Commons.
Artículos relacionados
Nobel de Química para List y MacMillan por su ingeniosa herramienta para construir moléculas

El investigador alemán Benjamin List y el escocés David MacMillan han sido galardonados con el Premio Nobel de Química 2021 “por el desarrollo de la organocatálisis asimétrica”, una novedosa herramienta de construcción molecular. Este avance ha tenido un gran impacto en la investigación farmacéutica y ha favorecido que la química sea más ecológica.

Primeras imágenes moleculares de un receptor olfativo en funcionamiento

Investigadores de la Universidad de Rockefeller (EE UU) han descrito el complejo mecanismo que utilizan los receptores olfatorios para detectar las moléculas odoríferas, y por primera vez ofrecen imágenes, obtenidas con microscopía crioelectrónica, de su estructura funcionando. Estos receptores son ‘promiscuos’, se pueden unir a un gran número de moléculas diferentes.