Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Descubren un mecanismo genético clave para el crecimiento celular de la mosca del vinagre

La regeneración y el crecimiento de tejidos y órganos de la mosca del vinagre (Drosophila melanogaster) se produce gracias a la colaboración entre un factor de transcripción genética y una proteína relacionada con diferentes tipos de cáncer. Así lo demuestra un nuevo trabajo, publicado en EMBO Reports, que abre nuevas vías de estudio para comprender el desarrolo de los procesos tumorales.

De izquierda a derecha: Florenci Serras, Marina Ruiz-Romero y Montserrat Corominas, investigadores del departamento de Genética de la UB y el Instituto de Biomedicina de la UB (IBUB). / UB

Un equipo de la Universidad de Barcelona ha descrito una relación clave para comprender el control del tamaño de los órganos de la mosca del vinagre (Drosophila melanogaster). Según la investigación publicada en la revista de la Organización Europea de Biología Molecular, EMBO Reports, la colaboración entre el factor de transcripción Cabut y la proteína Yorkie (YAP/TAZ en humanos) es necesaria para la regeneración y el crecimiento de los tejidos y órganos.

Este nuevo trabajo podría tener implicaciones biomédicas; ya que la proteína Yorkie está relacionada con diferentes tipos de cáncer y, por tanto, bloquear la unión entre Cabut y Yorkie podría ser una diana terapéutica potencial.

Cabut es un factor de transcripción, un tipo de proteína pegada, directa o indirectamente, al ADN que participa en la transmisión de la información genética regulando la expresión de los genes. "Cabut está relacionado con la regulación del crecimiento y la proliferación celular, pero hasta ahora no se conocían ni los genes que regulaba ni su mecanismo de acción", explica Marina Ruiz Romero, investigadora en el departamento de Genética de la Universidad de Barcelona y el Instituto de Biomedicina de la UB (IBUB), y primera autora del artículo.

Para averiguar el mecanismo de funcionamiento, los científicos usaron una técnica de secuenciación de alto rendimiento llamada Chip-seq. Con esta tecnología determinaron los lugares del genoma donde se encuentra el factor de transcripción Cabut. Después, el equipo de la UB comparó los resultados con diferentes bases de datos hasta que encontraron otra proteína que aparecía en los mismos lugares del genoma: Yorkie.

Cuando la proteína Yorkie está alterada se relaciona con crecimiento descontrolado y cáncer

El paso siguiente fue comprobar experimentalmente que las dos proteínas (Cabut y Yorkie) se encontraban juntas y dependían la una de la otra para controlar el crecimiento. "Con diferentes experimentos genéticos analizamos qué pasaba si se sacaba una de las dos proteínas y concluimos que se necesitan la una a la otra para promover y regular el crecimiento", apunta Corominas.

Nuevas vías para comprender la evolución de los tumores

Esta investigación abre nuevas vías de estudio para comprender el desarrollo de los procesos tumorales. De hecho, la proteína equivalente a Yorkie en humanos (YAP/TAZ) funciona como coactivador transcripcional en procesos de crecimiento, y cuando está alterada se relaciona con crecimiento descontrolado y cáncer.

Los fármacos sobre esta vía (de señalización Hippo) no han tenido mucho éxito, y por ello sería más prometedora una actuación a través de los factores con los que interactúa. "Los estudios con células humanas son mucho más complicados porque hay más copias de cada gen, pero el objetivo sería impedir la unión de Yorkie con otros factores para bloquear su actividad. Después de nuestros resultados, pensamos que Cabut podría ser un diana potencial", destaca la investigadora.

La investigación futura de los investigadores de la UB continuará profundizando en los mecanismos de la regeneración de tejidos. "El cáncer y la regeneración tienen muchos puntos en común, pero en un caso se trata de una proliferación controlada y en el otro de una proliferación descontrolada que provoca el proceso tumoral. La idea es ver cómo funciona Yorkie en estos dos contextos para conocer mejor los mecanismos de los tumores", explica Marina Ruiz Romero, investigadora de la UB y otra de las autoras.

En los próximos estudios, el equipo seguirá utilizando la mosca del vinagre como organismo modelo para identificar nuevos genes implicados en estos procesos. "La investigación básica es crucial para encontrar algún día aplicaciones biomédicas, y en este sentido, muchas de las cosas que sabemos ahora sobre el desarrollo, el cáncer o la regeneración no las sabríamos sin la Drosophila", concluye Corominas.

Referencia bibliográfica:

Ruiz-Romero, M.; Blanco, E.; Paricio, N.; Serras, F.; Corominas, M. "Cabut/dTIEG associates with the transcription factor Yorkie for growth control". EMBO Reports, enero de 2015. DOI 10.15252/embr.201439193

Fuente: Universidad de Barcelona
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Se resuelve gracias a la epigenética un misterio del cáncer de hace más de cuarenta años

En 1975 se descubrió que en algunos cánceres existía una alteración genética en una célula transformada, le faltaba una pieza, el nucleótido “Y”. Un equipo dirigido por el Instituto de Investigación contra la Leucemia Josep Carreras ha hallado que el silenciamiento epigenético del gen TYW2 es la causa de la pérdida del esquivo nucleótido.

Alt de la imagen
Describen los mecanismos responsables de la competencia entre genomas mitocondriales

La selección entre ADN mitocondriales depende de cómo estos afectan al metabolismo celular. Así concluye un estudio, publicado en Science Advances, que revela cómo la célula es capaz de reconocer la presencia de diferentes ADN de mitocondria y seleccionar de forma específica aquellos dependiendo de cómo influyen en su estado metabólico.