Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
El ‘Journal of Computational Physics’ publica el estudio

Mejoran modelos matemáticos que describen sistemas complejos

Expertos de la Universidad Autónoma de Madrid y el Instituto Weierstrass de Berlín han obtenido nuevas aproximaciones "eficaces y fiables" en modelos matemáticos que se usan para describir gran cantidad de fenómenos físicos y biológicos. Su nombre, modelos de convección-reacción-difusión.

Simulación numérica obtenida con un método de diferencias finitas. Imagen: UAM.

En matemáticas los denominados 'modelos de convección-reacción-difusión' describen sistemas complejos donde el fenómeno físico que domina es el transporte o concentración de entidades. Así sucede, por ejemplo, en el crecimiento de bacterias o en el desarrollo de tumores. Estos modelos matemáticos se pueden 'contaminar' por las denominadas 'oscilaciones espurias', que pueden producir resultados erróneos e inexactos. Un ejemplo podría ser la aparición de concentraciones negativas de compuestos al describir una reacción química.

En un estudio publicado en el Journal of Computational Physics, la profesora Julia Novo de la Universidad Autónoma de Madrid (UAM), y el profesor Volker John, director del grupo de Análisis Numérico y Computación Científica del Instituto Weierstrass de Berlín (Alemania), comparan distintos métodos numéricos para obtener aproximaciones a modelos de convección-reacción-difusión sin oscilaciones espurias. Esto se traduce en la posibilidad de contar con herramientas matemáticas "eficaces y fiables" para el análisis numérico de sistemas complejos, como lo son diversas reacciones químicas y una gran cantidad de fenómenos físicos y biológicos.

Los modelos sirven para describir reacciones químicas y fenómenos como el crecimiento de tumores o el movimiento de fluidos

Según explica la profesora Novo: “Las soluciones físicas de los modelos de convección-reacción-difusión son difíciles de simular. Esto se debe a la presencia de zonas donde la solución cambia de valor muy rápidamente en una región muy pequeña del recinto donde se estudia el modelo. Para estos casos se hace necesaria la utilización de métodos numéricos, a los que se denomina 'estabilizados', que reemplacen a los métodos clásicos. Pero incluso con la técnica de estabilización, es muy frecuente la presencia de oscilaciones en las aproximaciones producidas por los métodos cerca de las zonas de variación rápida”.

Entre los métodos numéricos estudiados por los autores para obtener aproximaciones a modelos de convección-reacción-difusión, se encuentran métodos de elementos finitos y métodos de diferencias finitas. Los profesores comprobaron que los primeros producen aproximaciones totalmente libres de oscilaciones, aunque requieren un tiempo de computación que puede ser bastante elevado. Por su parte, los segundos producen aproximaciones con oscilaciones apenas perceptibles y son más eficientes en cuanto que requieren un tiempo de computación considerablemente menor.

Para los matemáticos, las aplicaciones de estos métodos a modelos que describen distintos fenómenos físicos y biológicos parecen ser muy amplias. Actualmente, por ejemplo, estudian su aplicabilidad a una serie de ecuaciones que describen el movimiento de los fluidos y que se utilizan, entre otros, en el estudio de la atmósfera terrestre y de las corrientes oceánicas.

Referencia bibliográfica:

John, Volker y Novo, Julia. "On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations". Journal of Computational Physics 231 (4): 1570-1586, febrero de 2012.

Fuente: Unidad de Cultura Científica de la Universidad Autónoma de Madrid
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
El Libro Blanco de las Matemáticas propone 64 medidas para impulsar esta ciencia en España
SINC

La Real Sociedad Matemática Española y la Fundación Ramón Areces presentan un exhaustivo análisis sobre la situación de las matemáticas en aspectos como la educación, las salidas profesionales, el impacto socioeconómico, la divulgación, la igualdad de género, la internacionalización y la investigación.

Alt de la imagen
El cerebro congela el tiempo para tomar decisiones rápidas

Ante situaciones imprevistas que requieren decidir de forma inmediata y eficaz, el cerebro convierte esa escena dinámica en un fotograma, una imagen estática que le permite entender la realidad cambiante, eliminando el tiempo y dejando solo el espacio. Una investigación liderada desde la Universidad Complutense de Madrid lo ha comprobado con la ayuda de más de 400 voluntarios y un juego de ordenador.