Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Diseñada una nueva fórmula para calcular los efectos de la radioterapia

Un equipo hispano-cubano de investigadores, entre los que figuran físicos de la UNED, ha desarrollado un modelo matemático para describir lo que ocurre en los pacientes con cáncer sometidos a radioterapica fraccionada, que les aporta dosis por días u horas. Los resultados ayudarán a pronosticar mejor sus efectos en el tumor y en los tejidos circundantes.

divulgaUNED
17/4/2013 08:59 CEST

Ejemplo de radioterapia guiada por imagen / Varian Medical Systems Inc.

En las últimos décadas se han sucedido diferentes modelos radiobiológicos que trataban de predecir el efecto de una terapia radiológica sobre un tejido, ya fuese cancerígeno o sano. El objetivo era diseñar el tratamiento más efectivo y menos perjudicial para el paciente, aniquilando el tumor, pero las nuevas terapias multifraccionadas –en las que al paciente se le dan dosis separadas por días o incluso por horas– requieren cálculos más complejos.

Ahora un grupo de investigación de la UNED ha hallado una nueva manera de realizar estas operaciones con un modelo inspirado en la física estadística, que tiene en cuenta el efecto del tiempo entre sesiones de radiación.

“Hemos establecido una fórmula matemática para describir los efectos de una serie de dosis de radiación en un tejido, y hemos estudiado las consecuencias que, se derivarían para la planificación de tratamientos”, explica Daniel Rodríguez-Pérez, investigador del grupo de investigación en Física Médica de la UNED y coautor del estudio que publica la revista Physica A.

Los científicos, entre los que también se encuentran expertos de la Fundación ACE-Instituto Catalán de Neurociencias Aplicadas y de la Universidad de La Habana (Cuba), insisten en que esta fórmula “es un paso prometedor” pero que todavía está pendiente de una verificación experimental por otros grupos de investigación.

Tres únicos parámetros

El equipo de investigadores ha utilizado la denominada entropía de Tsallis para desarrollar la fórmula matemática. Esta magnitud ha sido utilizada para describir comportamientos estadísticos en muchos sistemas de la naturaleza, desde terremotos hasta células, en los que se requiere medir el grado de desorden.

El modelo matemático desarrollado requiere solamente conocer tres parámetros del tejido, que los autores han denominado dosis crítica, exponente crítico y factor de reparación del tejido. Con estos datos se relacionan las tres variables de un tratamiento, como son la dosis de radiación por sesión, la probabilidad de muerte celular y el tiempo entre sesiones.

El modelo matemático requiere solamente conocer tres parámetros

En un estudio anterior, los mismos científicos habían estudiado la tasa de supervivencia de las células de un tejido sometidas a una única dosis de radiación. Esto les permitió descubrir que cada tipo de tejido parece caracterizarse por un número, que es su exponente crítico. El trabajo también reveló que existe una dosis crítica –muy elevada– con la que se aniquila totalmente un tejido tumoral.

El equipo utiliza ahora esas características para diseñar la fórmula que permite combinar sucesivos tratamientos. “Usamos las matemáticas como herramienta, como lenguaje. Con ellas expresamos las condiciones que se deben cumplir, basándonos en la observación de otros experimentos, y así llegamos a nuestro modelo, que es el más sencillo que las cumple”, apunta José Carlos Antoranz, investigador de la UNED y otro de los autores.

Maximizar el beneficio-riesgo del paciente

El objetivo final es que el oncólogo-radiólogo pueda aplicar la fórmula al tejido sano y tumoral para conseguir radiar de forma que se destruyan las células cancerígenas y sobrevivan las sanas.

“Nuestro modelo indica que hay una cantidad de dosis con la que se mata todas las células del tumor y que, con varias sesiones en condiciones bien escogidas, se puede llegar a esa situación, dañando lo menos posible el tejido sano circundante”, afirma Rodríguez-Pérez.

El modelo contempla dos aspectos: la cantidad de radiación de la dosis y el tiempo entre las sesiones. “En resumen, intentamos maximizar la relación beneficio-riesgo para el paciente, teniendo en cuenta tanto las características del tumor como de los tejidos que lo rodean”, sintetiza Antoranz.

Referencia bibliográfica:

O. Sotolongo-Grau, D. Rodríguez-Pérez, O. Sotolongo-Costa y J.C. Antoranz. “Tsallis entropy approach to radiotherapy treatments”, Physica A, enero 2013. DOI: 10.1016/j.physa.2013.01.020.

Fuente: divulgaUNED
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
Nobel de Física para tres investigadores que abrieron nuevos caminos hacia los agujeros negros

La Real Academia Sueca de las Ciencias ha otorgado el Premio Nobel de Física 2020 al británico Roger Penrose por descubrir que la formación de un agujero negro es una predicción sólida de la teoría general de la relatividad y al alemán Reinhard Genzel y la estadounidense Andrea Ghez, cuarta mujer en obtener este galardón, por encontrar un objeto supermasivo de este tipo en el centro de nuestra galaxia.

Alt de la imagen
Galardones otorgados por la RSEF y la Fundación BBVA
Giro ‘mágico’ del grafeno y baterías de papel en los Premios de Física 2020

La Medalla de la Real Sociedad Española de Física de este año ha recaído en el investigador Pablo Jarillo del MIT por el descubrimiento de la superconductividad en capas de grafeno giradas, y el Premio de Física, Innovación y Tecnología en la científica Neus Sabaté del CSIC, inventora de unas baterías biodegradables para sistemas de diagnóstico, como los test de coronavirus.