Suscríbete al boletín semanal

Recibe cada semana los contenidos más relevantes de la actualidad científica.

Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Un nuevo modelo matemático predice el riesgo de mortalidad en las UCIs

Investigadores españoles han desarrollado un modelo predictivo de aprendizaje automático que pronostica el riesgo de morir de los pacientes ingresados en las UCIs. Este modelo ayudará a tomar decisiones médicas personalizadas dependiendo del estado de cada persona afectada.

En la imagen, una médico realiza una cirugía en tiempos de pandemia. / Artur Tumasjan | Unsplash

En el campo de la inteligencia artificial, el aprendizaje automático permite que un modelo aprenda de manera autónoma a partir de la información proporcionada por los datos históricos disponibles, y se modifique a medida que los datos se actualizan.

Un reciente estudio español, publicado en la revista Artificial Intelligence in Medicine, presenta un modelo predictivo de pronóstico que evalúa el riesgo de mortalidad de los pacientes ingresados en las UCIs. La investigación ha sido realizada por un equipo del departamento de Matemáticas de la Universidad Autónoma de Barcelona (UAB), en colaboración con el Hospital de Mataró.

El modelo facilita el proceso de toma de decisiones del personal sanitario de las UCIs, ya que mejora la predicción de mortalidad prematura

El modelo, que utiliza herramientas de aprendizaje automático, facilita el proceso de toma de decisiones del personal sanitario de las UCIs, debido a que mejora la predicción de mortalidad prematura.

Además, hace más eficientes las decisiones médicas sobre pacientes de alto riesgo, valora la eficacia de nuevos tratamientos y detecta cambios en la práctica clínica.

Los autores han demostrado que el nuevo modelo es una alternativa mejor a la aproximación tradicional, que consisten en predecir el riesgo de mortalidad a partir de la puntuación APACHE (Acute Physiology And Chronic Health Evaluation) –un cuestionario ampliamente utilizado para evaluar el estado de salud de una persona en función de diferentes indicadores–.

Un modelo más preciso

Mediante una combinación de las predicciones individuales de cada clasificador, los investigadores han mejorado el pronóstico del modelo de forma que los errores de unas predicciones sean compensados por los aciertos de otras, teniendo en cuenta el desequilibrio que supone la baja proporción de pacientes que mueren en las UCIs.

De esta manera, el modelo vaticina la causa de la muerte de un paciente con un riesgo de mortalidad elevado, así como el destino del paciente si el riesgo es bajo. A este tipo de modelo se le denomina modelo predictivo jerárquico, porque hay dos niveles de predicción.

Este modelo puede ayudar a los expertos a tomar decisiones sobre los pacientes de manera personalizada y también a las autoridades sanitarias en la gestión de recursos

“El modelo jerárquico predictivo de pronóstico estudia cuáles de las características del paciente son más decisivas para la evaluación de su riesgo de mortalidad. También se puede extrapolar para comparar diferentes UCIs, o para analizar la mejora con el tiempo de los protocolos de una determinada UCI”, indica Rosario Delgado, investigadora del departamento de Matemáticas de la UAB.

“Esta metodología es útil y prometedora, y tiene una importante aplicabilidad clínica porque ayuda a los expertos a tomar decisiones médicas sobre los pacientes de manera personalizada, y a las autoridades sanitarias en la gestión de recursos”, concluye la experta.

Referencia:

Delgado et al. "Survival in the Intensive Care Unit: A prognosis model based on Bayesian classifiers" Artificial Intelligence in Medicine, Volume 115, 2021, 102054, ISSN 0933-3657. 

Fuente:
UAB
Derechos: Creative Commons.
Artículos relacionados
El confinamiento eliminó las variantes de coronavirus circulantes durante la primera ola en España

Investigadores de varias instituciones españolas han publicado los datos más completos sobre las variantes del coronavirus que dominaron las primeras olas en España. El trabajo confirma que el encierro impuesto sirvió para reducir drásticamente la transmisión de estas variantes, incluso de las más contagiosas.

Fumar aumenta el riesgo de morir por covid-19

Desde el comienzo de la pandemia, el tabaquismo se ha señalado como un factor de riesgo para el coronavirus. Ahora, el primer estudio que reúne datos observacionales y genéticos confirma cómo es ‘muy probable’ que este hábito agrave la enfermedad y aumente el peligro de muerte asociado.