Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Un nuevo modelo tumoral acelera el tratamiento del cáncer

Investigadores del Centro Nacional de Investigaciones Oncológicas han desarrollado una estrategia que permite imitar la complejidad genética de un glioma, un tipo de tumor que se produce en el cerebro o en la médula espinal, gracias a la edición genómica CRISPR-Cas9 y el sistema RCAS/TVA. Estas herramientas dan la posibilidad de secuenciar una célula genéticamente, eliminando o insertando nuevo ADN, y modelar el cáncer de páncreas, ovarios, pecho y melanoma.

Expresión de CAS9 (verde) y GFAP (rojo) en una sección coronal del cerebro de un ratón TVA/Cas9. / CNIO

Un modelo de ratón potente y versátil ayudará a mejorar la investigación del cáncer, gracias al Grupo de Tumores Cerebrales Fundación Seve-Ballesteros del Centro Nacional de Investigaciones Oncológicas (CNIO). La nueva estrategia, publicada esta semana en Nature Communications, acelerará el estudio preclínico de nuevas dianas terapéuticas.

“Una prioridad actual en la investigación del cáncer es la validación funcional de las alteraciones genéticas que son relevantes para la progresión del tumor y la respuesta al tratamiento”, explican los autores. “Para lograrlo, es esencial desarrollar modelos flexibles capaces de acelerar la distinción entre mutaciones conductoras y pasajeras”, aclaran.

El modelo permite recrear algunas de las alteraciones genéticas halladas en el glioma

“Una prioridad actual en la investigación del cáncer es la validación funcional de las alteraciones genéticas que son relevantes para la progresión del tumor y la respuesta al tratamiento”, explican los autores. “Para lograrlo, es esencial desarrollar modelos flexibles capaces de acelerar la distinción entre mutaciones conductoras y pasajeras”, aclaran.

El método creado por el equipo de investigadores, liderado por Massimo Squatrito, consiste en combinar las tecnologías CRISPR-Cas9 y RCAS/TVA para crear un modelo de ratón que imita la complejidad genética de un tumor. La primera da la posibilidad de secuenciar una célula genéticamente, eliminando o insertando nuevo ADN, mientras que, a través de la segunda, se puede modelar algunos tumores como los de páncreas, ovarios, pecho o melanomas.

Barbara Oldrini y Álvaro Curial-García, primeros autores del trabajo, han utilizado este modelo para recrear algunas de las alteraciones genéticas halladas en el glioma, un tipo de tumor que se produce en el cerebro o en la médula espinal.

En concreto, han estudiado la fusión de genes de una familia de kinasas llamada NTRK y la mutación de BRAF, ambas presentes en otros tumores además del glioma.

“Lo que hemos visto utilizando este modelo es que ahora tenemos la capacidad de generar mutaciones genéticas complejas y estudiar cómo contribuyen a la patogénesis del glioma”, apunta Squatrito.

"Con este modelo podremos acelerar las pruebas preclínicas de posibles nuevas terapias", explica Squatrito

Tratamientos alternativos para paliar la resistencia

Los investigadores han utilizado su modelo para estudiar varias estrategias terapéuticas que se emplean actualmente en la clínica y para analizar los mecanismos de resistencia que frecuentemente llevan a la repetición del tumor.

Basándose en sus hallazgos, los autores sugieren tratamientos alternativos que podrían utilizarse para paliar la resistencia a los inhibidores de TRK y BRAF.

“Somos capaces de recrear de forma eficiente una gran variedad de alteraciones genéticas, incluidas translocaciones de genes y mutaciones puntuales, y eso nos permite avanzar más rápido desde el modelo animal hasta el análisis traslacional”, subraya Squatrito.

“En este trabajo demostramos que esta vía es factible y creemos que, con un modelo tan flexible como el nuestro, podremos acelerar las pruebas preclínicas de posibles nuevas terapias”, concluye.

Este trabajo ha sido financiado por la Fundación Seve-Ballesteros, la Fundación BBVA a través de una Beca Leonardo, la Acción Estratégica en Salud del Plan Estatal de Investigación Científica, Técnica y de Innovación, el Instituto de Salud Carlos III cofinanciado por el Fondo Europeo de Desarrollo Regional (FEDER).

Fuente: SINC
Derechos: Creative Commons
Artículos relacionados
Luis Liz-Marzán y Carlos Simón reciben los Premios Lilly de Investigación Biomédica 2021

La Fundación Lilly ha reconocido las trayectorias de Luis Liz-Marzán y Carlos Simón en las categorías preclínica y clínica, respectivamente. El primero, por sus estudios en nanociencia y nanomedicina y potenciales aplicaciones en la detección, diagnóstico y terapia de enfermedades como el cáncer. El segundo, por sus trabajos sobre fertilidad humana e investigaciones para comprender el comportamiento del endometrio.

El nuevo tratamiento para el alzhéimer aprobado por la FDA genera controversias

Por primera vez desde 2003, la Administración de Alimentos y Medicamentos de Estados Unidos ha aprobado un medicamento para el tratamiento del alzhéimer. La decisión ha suscitado una gran polémica ya que no cuenta con grandes resultados probados.