Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Un modelo matemático clasifica países según su economía del conocimiento

Establecer la posición de un país en el ámbito de la economía del conocimiento no es una tarea sencilla, pero investigadores de la Universidad de Córdoba han desarrollado un módelo para esta tarea basándose en el aprendizaje automático y los datos del Banco Mundial. El sistema puede ayudar a los gobiernos en su toma de decisiones.

La economía basada en el conocimiento despierta el interés de legisladores y organizaciones internacionales. / Fotolia

Especialmente a raíz de la crisis económica mundial, la economía basada en el conocimiento ha adquirido un interés creciente entre legisladores de diferentes países y organizaciones internacionales. Su fin es conseguir economías más competitivas basándose en la innovación. Sin embargo, cuesta determinar qué nivel han alcanzado los diferentes países respecto a esta economía del conocimiento.

Un modelo de clasificación ordinal procedente del campo del aprendizaje automático creado por científicos de la Universidad de Córdoba (UCO) permite ahora realizar con bastante precisión esta catalogación con menos variables de las empleadas hasta ahora. El sistema, que emplea información del Banco Mundial, clasifica en cuatro grupos el grado de transición hacia una economía basada en el conocimiento de 54 países y podría ayudar a tomar decisiones políticas en materia de I+D+i y educación a los gobiernos.

España se sitúa entre las economías del conocimiento que están justo por detrás de las avanzadas

La economía del conocimiento pone su énfasis más en las capacidades intelectuales que en factores físicos. Para medir estas capacidades, los investigadores de la UCO, que pertenecen al equipo de Aprendizaje y Redes Neuronales Artificiales (Ayrna), tomaron las variables que consideraron más significativas de las muchas que emplea el Banco Mundial. Uno de sus objetivos era agrupar los países según el nivel alcanzado en torno a la economía basada en el conocimiento. Después, desarrollaron un modelo con el que, cambiando los parámetros de cada variable, se podría determinar en qué posición quedaría un país respecto a estos cuatro grupos.

Cada una de las variables utilizadas pertenece a lo que el Banco mundial denomina como “los cuatro pilares de la economía del conocimiento”. Algunos ejemplos: datos sobre aranceles o regulaciones económicas, que configuran el pilar del régimen económico e institucional; porcentaje de matriculados en educación Primaria, Secundaria o Universitaria, para el pilar de la educación y las habilidades; sobre número de líneas de teléfono, banda ancha o usuarios de internet, para el pilar de las infraestructuras en tecnologías de la información y la comunicación; y sobre patentes o producción de artículos en revistas científico-tecnológicas, para el pilar del sistema de innovación.

A partir de estos datos, agruparon los 54 países objeto de estudio (europeos y de la OCDE, más Túnez, China y su región administrativa especial Hong Kong) en los cuatro grupos: economías del conocimiento avanzadas, como Suiza, Japón o Francia; economías del conocimiento que están justo por detrás de las avanzadas, entre las que se encuentra España o Chequia; economías del conocimiento moderadas, como Eslovaquia o Bulgaria; y economías del conocimiento en fases tempranas, como Armenia, Turquía o Albania.

Comprobación del modelo

Definidas las variables que se emplearían y agrupados los países por su estado de economía del conocimiento, los especialistas, dirigidos por el catedrático César Hervás, prepararon el modelo que, además de clasificar los países en cada uno de los grupos, permite modificar los valores de las variables y saber en cuál de los cuatro grupos estaría un país si se modifican los mismos. Para desarrollarlo usaron los métodos de aprendizaje automático basados en máquinas de vectores soporte.

El modelo usa métodos de aprendizaje automático basados en máquinas de vectores

“De este modo, podríamos estimar a qué grupo pertenecería un país dado si se modifica en él en un porcentaje determinado de una variable para obtener, por ejemplo, mayor número de patentes o de artículos científicos u otras variables y analizar la influencia en la clasificación del país en uno de los cuatro grupos”, explica la investigadora Mónica de la Paz. El modelo obtuvo una gran precisión y los resultados han sido publicados en la revista Expert Systems with Applications.

Recientemente, el equipo también desarrolló otro modelo para medir el progreso de los miembros de la Unión Europea para alcanzar un desarrollo sostenible, otro reto, como la economía del conocimiento, al que se han embarcado los países occidentales. En este caso, usando la información de los 27 países miembros de la Unión entre 2005-2010 (previamente a la incorporación de Croacia a las instituciones comunitarias), los investigadores de la UCO emplearon siete escenarios de desarrollo sostenible de los que se podían deducir la formación de cuatro grupos de países según su grado de compromiso con la sostenibilidad.

Además de con trabajos sobre economía e investigación y desarrollo (I+D), el grupo Ayrna trabaja con técnicas de inteligencia computacional en campos tan diversos como el biosanitario (en colaboración con el Instituto Maimónides de Investigación Biomédica) o medioambiental.

Referencias bibliográficas:

Mónica de la Paz, Pedro Antonio Gutiérrez, César Hervás, ‘Classification of countries’ progress toward a knowledge economy based on learning classification techniques’. Expert System with Applications. 42 (2015). 562-572.

M. Pérez, Mónica de la Paz, Pedro Antonio Gutiérrez, César Hervás, ‘Classification of EU countries’ progress toward sustainable development based on ordinal regression techniques’. Knowledge-Based Systems. 66 (2014). 178-189.

Fuente: Universidad de Córdoba
Derechos: Creative Commons
Artículos relacionados
Alt de la imagen
El Libro Blanco de las Matemáticas propone 64 medidas para impulsar esta ciencia en España
SINC

La Real Sociedad Matemática Española y la Fundación Ramón Areces presentan un exhaustivo análisis sobre la situación de las matemáticas en aspectos como la educación, las salidas profesionales, el impacto socioeconómico, la divulgación, la igualdad de género, la internacionalización y la investigación.

Alt de la imagen
El cerebro congela el tiempo para tomar decisiones rápidas

Ante situaciones imprevistas que requieren decidir de forma inmediata y eficaz, el cerebro convierte esa escena dinámica en un fotograma, una imagen estática que le permite entender la realidad cambiante, eliminando el tiempo y dejando solo el espacio. Una investigación liderada desde la Universidad Complutense de Madrid lo ha comprobado con la ayuda de más de 400 voluntarios y un juego de ordenador.