Suscríbete al boletín semanal

Suscríbete para recibir cada semana el boletín SINC con los contenidos más relevantes y no te pierdas nada de la actualidad científica.

Suscríbete al boletín semanal
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones
Si estás registrado

No podrás conectarte si excedes diez intentos fallidos.

Si todavía no estás registrado

La Agencia SINC ofrece servicios diferentes dependiendo de tu perfil.

Selecciona el tuyo:

Periodistas Instituciones

Qué patrones matemáticos siguen las abejas para fabricar sus perfectos panales

Las abejas sin aguijón australianas construyen sus panales siguiendo complejos patrones sin tener un plan previo ni coordinarse de forma global con el resto de abejas obreras. Esta es la conclusión de un estudio, liderado por españoles, que muestra que estos insectos siguen las mismas reglas matemáticas que los átomos o las moléculas cuando se agregan a un cristal.

Panales de abejas Tetragonula mostrando (a) patrones diana, (b) espiral, (c) espirales dobles y (d) terrazas desordenadas. / IACT

Un equipo internacional de científicos, liderado por el Instituto Andaluz de Ciencias de la Tierra (IACT), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad de Granada, ha desvelado por primera vez uno de los secretos de la naturaleza que aún no tiene una explicación convincente: qué patrones matemáticos siguen las abejas para fabricar sus perfectos panales.  

Los panales forman los mismos patrones de terrazas que se observan en minerales, como por ejemplo, en el nácar de las conchas de los moluscos

Los investigadores, que han publicado sus resultados en la revista Journal of the Royal Society Interface, demuestran, en un ejemplo de la aplicabilidad de las matemáticas a la naturaleza, que las abejas sin aguijón australianas (Tetragonula carbonaria) construyen sus panales siguiendo complejos patrones sin tener un plan previo ni coordinarse de forma global con el resto de abejas obreras.  

Según sus resultados, las abejas fabrican sus panales siguiendo las mismas reglas matemáticas que los átomos o las moléculas cuando se agregan a un cristal. De este modo, los panales forman los mismos patrones de terrazas que se observan en minerales, como por ejemplo, en el nácar de las conchas de los moluscos.  

“Los panales de T. carbonaria presentan sorprendentes patrones que pueden ser espirales, dobles espirales, o con forma de diana”, explican Bruno Escribano Salazar y Antonio J. Osuna Mascaró, dos de los investigadores del IACT que han participado en este estudio.

Hasta la fecha, se sabía que las abejas obreras construyen las colmenas añadiendo nuevas celdas en el extremo de cada capa del panal, pero no había una explicación convincente acerca de cómo estos insectos endémicos de Australia llegaban a formar esos patrones complejos. “En el pasado se pensaba que sería necesario algún tipo de coordinación y comunicación entre obreras, posiblemente mediante señales químicas”, relatan los científicos.  

Sin un plan previo  

La investigación, en la que colaboran además del IACT científicos de la Universidad de Cambridge y la Universidad de Medicina Veterinaria de Viena, he permitido desarrollar un modelo matemático que explica cómo las abejas llegan a estos patrones sin necesidad de tener un plan previo ni coordinación global.

Cada obrera puede contribuir al crecimiento sin necesidad de una coordinación de grupo ni una inteligencia superior. Los patrones observados son un fenómeno emergente

Al examinar las estructuras y el orden que emerge en los panales, los investigadores encontraron un modelo de complejidad mínima, demostrando que cada abeja individualmente tan solo necesita información acerca de su entorno más próximo. Con esta mínima información, cada obrera puede contribuir al crecimiento sin necesidad de una coordinación de grupo ni una inteligencia superior. Los patrones observados son, por tanto, un fenómeno emergente, resultado del comportamiento local de las obreras.  

Los expertos simplificaron el modelo hasta reducirlo a tan solo dos parámetros: (R) el tamaño típico de la abeja y (α) un término aleatorio relacionado con la variabilidad en las celdas del panal. Afinando estos parámetros el modelo es capaz de generar todos los patrones que se observan en los panales.  

“Sabemos que los abejorros aprenden observando a otros; que el comportamiento de las abejas se ve afectado por sus estados emocionales, o que incluso pueden manejar conceptos como ‘igual’ y ‘diferente”, señalan los autores. Además existen evidencias de inteligencia a la hora de construir sus panales. “Solucionan los problemas ocasionales de la construcción, y lo hacen de una forma flexible que sugiere que no actúan únicamente por instinto”, recalcan.  

Comportamientos “rígidos”  

Pero también poseen una serie de comportamientos “rígidos”, sencillos e innatos, que permiten el funcionamiento de la colmena.

“Las abejas coordinan sus acciones a través de la modificación del entorno, no necesitan un plan maestro… ¡En este caso ni siquiera necesitan comunicarse!”, apuntan los investigadores

En las colonias de abejas estos comportamientos innatos permiten un fenómeno llamado estigmergia, por el cual fenómenos complejos pueden surgir a partir de acciones sencillas de muchos individuos, sin necesidad de que estos tengan un plan general.  

“Las abejas coordinan sus acciones a través de la modificación del entorno, no necesitan un plan maestro… ¡En este caso ni siquiera necesitan comunicarse!”, apuntan los investigadores. Basta con modificar localmente su entorno, y la autoorganización emerge casi de la nada. “Las estructuras que aquí describimos son resultado de un fenómeno emergente, no es un plan general, sino el resultado de acciones sencillas acumuladas”, indican.  

El mismo modelo (con algunas diferencias en sus parámetros) había sido anteriormente aplicado al crecimiento de cristales a escala microscópica por estos mismos investigadores. Por lo tanto, a pesar de que ambos sistemas son muy diferentes, los mismos patrones emergen como consecuencia de las mismas reglas de autoorganización.

Referencia:

Silvana S. S. Cardoso, Julyan H. E. Cartwright, Antonio G. Checa, Bruno Escribano, Antonio J. OsunaMascaró and C. Ignacio Sainz-Díaz. “The bee Tetragonula builds its comb like a cristal” Journal of the Royal Society Interface julio de 2020 Volume 17(168) https://doi.org/10.1098/rsif.2020.0187

Fuente: IACT (CSIC-UGR)
Derechos: Creative Commons.
Artículos relacionados
Alt de la imagen
El Libro Blanco de las Matemáticas propone 64 medidas para impulsar esta ciencia en España
SINC

La Real Sociedad Matemática Española y la Fundación Ramón Areces presentan un exhaustivo análisis sobre la situación de las matemáticas en aspectos como la educación, las salidas profesionales, el impacto socioeconómico, la divulgación, la igualdad de género, la internacionalización y la investigación.

Alt de la imagen
El cerebro congela el tiempo para tomar decisiones rápidas

Ante situaciones imprevistas que requieren decidir de forma inmediata y eficaz, el cerebro convierte esa escena dinámica en un fotograma, una imagen estática que le permite entender la realidad cambiante, eliminando el tiempo y dejando solo el espacio. Una investigación liderada desde la Universidad Complutense de Madrid lo ha comprobado con la ayuda de más de 400 voluntarios y un juego de ordenador.