You will not be able to connect if you exceed ten failed attempts.
The SINC Agency offers different services depending on your profile.
Select yours:
Bohr’s atomic model was utterly revolutionary when it was presented in 1913 but, although it is still taught in schools, it became obsolete decades ago. However, its creator also developed a much wider-ranging and less known quantum theory, the principles of which changed over time. Researchers at the University of Barcelona have now analysed the development in the Danish physicist’s thought – a real example of how scientific theories are shaped.
Porphyrins, the same molecules that convey oxygen in haemoglobin and absorb light during photosynthesis, can be joined to the material of the future, graphene, to give it new properties. This was recently shown by a team of scientists at the Technical University of Munich, in which a Spanish researcher also participated. The resulting hybrid structures could be used in the field of molecular electronics and in developing new sensors
The impassable blood–brain barrier prevents microorganisms from entering our brain, however it also blocks medicines that could help treat Parkinson’s, Alzheimer’s and other neurodegenerative diseases. Now, a Spanish physicist and other researchers at the University of Columbia (USA) have succeeded in embedding these substances in tiny lipid bubbles, in such a way that ultrasound can be used to release them into the specific area of the brain where they are needed.
The merger of two black holes, such as the one which produced the gravitational waves discovered by the LIGO Observatory, is considered an extremely complex process that can only be simulated by the world’s most powerful supercomputers. However, two theoretical physicists from the University of Barcelona have demonstrated that what occurs on the space-time boundary of the two merging objects can be explained using simple equations, at least when a giant black hole collides with a tiny black hole.
Scientists around the world are being kept in suspense by the negligible mass of neutrinos, subatomic particles that could be matter and antimatter at the same time. Now, researchers from the University of Tokyo, in collaboration with a Spanish physicist, have used one of the world’s most powerful computers to analyse a special decay of calcium-48, whose life, which lasts trillions of years, depends on the unknown mass of neutrinos. This advance will facilitate the detection of this rare decay in underground laboratories.
Behind the apparent randomness of a basketball game, a process of self-organisation is actually taking place amid the teams. The interactions between team mates and opponents are constantly influencing each other while the game itself allows for creative behaviours to emerge. This phenomenon, detected by Spanish researchers after analysing over 6,000 NBA games, resembles the way in which living things must continually evolve in order to survive in nature.
Scientists from Germany and Spain have discovered a way to create a BioLED by packaging luminescent proteins in the form of rubber. This innovative device gives off a white light which is created by equal parts of blue, green and red rubber layers covering one LED, thus rendering the same effect as with traditional inorganic LEDs but at a lower cost.
The antiquated heating systems in many Spanish churches create abrupt variations in temperature and humidity which can negatively affect the conservation of its artistic heritage, especially in tall ceiling areas. Also, as the heat rises, it takes time for the parishioners below to feel comfortable after the heating systems are turned on. These are the findings of an analysis conducted on a church in Madrid by researchers from the Institute of Geosciences (UCM-CSIC).
Researchers in Spain have discovered that if lead atoms are intercalated on a graphene sheet, a powerful magnetic field is generated by the interaction of the electrons’ spin with their orbital movement. This property could have implications in spintronics, an emerging technology promoted by the European Union to create advanced computational systems.
Quantum computing will allow for the creation of powerful computers, but also much smarter and more creative robots than conventional ones. This was the conclusion arrived at by researchers from the Complutense University of Madrid (UCM) and Austria, who have confirmed that quantum tools help robots learn and respond much faster to the stimuli around them.